13.4. MODES OF OPERATION 259

Nonce IV: Here we think of CBC Mode as a nonce-based encryption scheme, as in Section 11.6.4.
We start with the negative result

Theorem 13.5. With a nonce as the IV, CBC Mode is not IND-CPA secure.

PrROOF. Let 0 be the all-zero block and 1 be the all-one block. The attack on the IND-CPA security
is as follows:

e Send the message 0 with the nonce IV = 0 to the encryption oracle O, . The adversary
obtains the ciphertext Ol/c in return, where ¢ = e;(0).

e Now send the messages mg = 0 and m; = 1 to the O r oracle, with nonce 1. Notice this
is a new nonce and so the encryption is allowed in the game. Let 1||c* be the returned
ciphertext.

o If ¢* = ¢ then return ¥ = 1, else return o = 0.

To see why this attack works, note that if the hidden bit is b = 1 then the challenger returns c*
which is the evaluation of the block cipher on the block 1 & 1 = 0. Whereas if b = 0 then the
evaluation is on the block 0 ® 1 = 1. 0

On the positive side, when used only once nonce-based encryption is identical to a fixed IV, and so
CBC Mode used in a nonce-based encryption methodology is IND-PASS secure.

Random IV: With a random IV we can be more positive, since CBC Mode is IND-CPA secure as
we will now show.

Theorem 13.6. With a random IV, CBC Mode is IND-CPA secure assuming the underlying block
cipher ey acts like a pseudo-random permutation. In particular let A denote an adversary against
CBC Mode which makes q. queries to its encryption oracle, and let all plaintext submitted to both
the LR and encryption oracles be at most £ blocks in length. Then there is an adversary B such
that

T2
PRP(B) + ST

AdvOBE PR (A5 qe) < 2 Adv

[e]\'?] €k

where n is the block size of the cipher e, and T = (ge + 1) - £.

PROOF. In the security game the challenger needs to call the underlying block cipher on behalf of
the adversary. The total number of such calls is bounded by T' = (¢. + 1) - £.

Our first step in the proof is to replace the underlying block cipher e; by a pseudo-random
permutation. This can be done by the assumption that ej is a secure PRP, namely there is some
adversary B such that

(19) AdvPRP(B) = | Pr[A wins CBC[e;]] — Pr[A wins CBC[P]]

ek

where we let P denote a random permutation. Our next step is to switch from the component
being a random permutation to a random function. This follows in the same way as we proved the
PRF-PRP Switching Lemma (Lemma 11.2). Suppose we replace P by a random function F in the
CBC game and we let E denote the event, during the game CBC[.F], that the adversary makes two

260 13. BLOCK CIPHERS AND MODES OF OPERATION

calls to F which result in the same output value. We have

Pr[A wins CBC[P]] — Pr[A wins CBC[]—‘]]‘ -)Pr[A wins CBC[P]]
— Pr[A wins CBC[F] A —E]
— Pr[A wins CBC[F] A E]‘
-) Pr[A wins CBC[P]] — Pr[A wins CBC[P]]

— Pr[A wins CBC[F] | E] -Pr[E}‘

T2
(20) < Pr[E] < BYESE

since if E does not happen the two games are identical from the point of view of the adversary,
and by the birthday bound Pr[E] < %

Our final task is to bound the probability of A winning the CBC game when the underlying
“block cipher” is a random function. First let us consider how the challenger works in the game
CBC[F]. When the adversary makes an Or or O, call, the challenger answers the query by calling
the random function. As we are dealing with a random function, and not a random permutation,
the challenger can select the output value of F independently from the codomain; i.e. it does not
need to adjust the output values depending on the previous values. This last point will make our
analysis simpler, and is why we switched to the PRF game from the PRP game.

Now notice that the adversary does not control the inputs to the random function at any stage
in the game, so the only way he can find any information is by creating an input collision, i.e. two
calls the challenger makes to the random function are on the same input values®.

We thus let M, denote the event that the adversary makes an input collision happen within
the first j calls, and note that if M7 does not happen then the adversary’s probability of winning
is 1/2, i.e. the best he can do is guess. We have

Pr[A wins CBC[F]] = Pr[A wins CBC[F] | Mr| - Pr[Mr]
+ Pr[A wins CBC[F] | =My] - Pr[=Mr7]
< Pr[Mry] + Pr[A wins CBC[F] | ~M7]
1

So we are left with estimating Pr[Mr]. After g. queries to the encryption oracle the adversary has
made T' = ¢ - (ge + 1) indirect queries to the PRF; since each queries is of length ¢ and we need to
also include the challenge ciphertext. Thus the probability of a collision in the inputs to the PRF
after T queries is

Pr[My] ~ T? /2",

3This is why CBC Mode is not secure in the nonce-based setting as in this setting the adversary controls the
first input block, by selecting the first block of the message and the IV.

13.4. MODES OF OPERATION 261

Summing up we have

AV (A q.) = 2+ | PrlA wins CBCley]] - %

=2 ’Pr[A wins CBCle,]] — %
+ (Pr[A wins CBC[P]] — Pr[A wins CBC[P]]) ‘ adding in zero

<2 ’Pr[A wins CBCle]] — Pr[A wins CBC[P]]‘

+2- ’ Pr[A wins CBC[P]] — % triangle inequality
=2- AdvePAﬁP(B) +2- ‘ Pr[A wins CBC[P]] — % by equation (19)
1
= 2. AdVPRP(B) + 2.] Pr[A wins CBC[P]] — 5
+ (Pr[A wins CBC[F]] — Pr[A wins CBC[F]])) adding in zero

<2-AdvPRP(B)

€L

+2. ’ Pr[A wins CBC[P]] — Pr[A wins CBC[J—“]]‘

1
+2- ‘ Pr[A wins CBC[F]] — 3 triangle inequality
PRP T* . 1 .
<2-Adv, ™ (B) + on T 2. ‘ Pr[A wins CBC[F]] — B by equation (20)
T2
<2-AdvER®(B) + o T2+ Pr{My] by equation (21)
T2

<2-AdviR(B) + ST
O

Let us examine what this means when we use the AES block cipher in CBC Mode. First the block
length of AES is n = 128, and let us assume the key size is 128 as well. If we assume AES behaves
as a PRP, then we expect that

1
AdVZ%PS(B) ~ 18

for all adversaries B. We can now work out the advantage for any adversary A to break AES when
used in CBC mode, in the sense of IND-CPA. We find

2+2- T2
IND-CPA (4.
AdVCBC[AES] (A’ qe) < 9128
Thus even if the adversary makes 23°

be less than

calls to the underlying block cipher, the advantage will still

which is incredibly small. Thus as long as we restrict the usage of AES in CBC Mode with a
random IV to encrypting around 23 blocks per key we will have a secure cipher. Restricting the
usage of a symmetric cipher per key is enabled by requiring a user to generate a new key every so
often.

