Advances in Elliptic Curve Cryptography
(Edited with I.F. Blake and G. Seroussi). London Mathematical Society Lecture Note Series. Cambridge University Press, 2004. ISBN: 0 521 60415 X (PB). |
A shared secret $G$with
A shared secret $Q$Also in line 1 of the algorithm replace $\log_2(#K)$ with $\log_2(q)$.
t^{-1} H(m)by
t H(m)
\begin{equation*} \begin{split} \alpha_{i+1} & = -30 x_Q2 - 5 x_Q - 9 A_{i+1} , \\ \beta_{i+1} & = -70 x_Q3 - 20 x_Q2 - (42 A_{i+1} + 1) x_2 - 2A_{i+1} - 27 B_{i+1} .\\ \end{split} \end{equation*}Furthermore, one first has to translate the $x$-axis to get rid of the quadratic term and then apply (VI.4) which then gives
\[ c_i2 = \frac{(48 A_i - 1)(864 \beta_{i+1} - 72 \alpha_{i+1} + 1)} {(864B_i - 72A_i + 1)(48 \alpha_{i+1} - 1)}\cdotp \]
"we have $L^* \subseteq $(\F_{q^k}^*)^r$."