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What Questions Will We Answer?

What is Shamir secret sharing?

How can we obtain a passively secure protocol when t < n/2?

When is a secret sharing scheme multiplicative?

How to authenticate the computation via MACs.

How to generate random sharings quickly

How to perform reactive computation.

How to work with any LSSS, and not just multiplicative ones.
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Reed–Solomon Codes

Shamir secret sharing and Reed–Solomon codes are highly related.

A Reed–Solomon code is defined by two integers (n, t) with t < n.

It can detect n − t − 1 errors, and correct (n − t − 1)/2 errors.

Take a finite field Fq with q > n.
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Reed–Solomon Codes

Consider the set of polynomials of degree less than or equal to t
over Fq

P = {f0 + f1 · X + · · ·+ ft · X t : fi ∈ Fq}.

This defines the set of code-words in our code, equal to qt+1.

The actual code words are given by

C = {(f (1), f (2), . . . , f (n)) : f ∈ P}.

Think of f as the message and c ∈ C as the codeword.
I There is redundancy in this representation
I t · log2 q bits of information are represented by n · log2 q bits.
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Reed–Solomon Codes
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Reed–Solomon Codes: Data Recovery

Given a received code word c = (c1, . . . , cn) = (f (1), . . . , f (n)), we
want to recover the message f .

This is equivalent to solving the system of equations

c1 = f0 + f1 · 1 + · · ·+ ft · 1t ,

...
...

cn = f0 + f1 · n + · · ·+ ft · nt .

So to solve for fi we just need to invert this linear system.
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Reed–Solomon Codes: Data Recovery
This can be (more easily done via Lagrange interpolation)

Take the values

δi(X )←
∏

1≤j≤n,i 6=j

X − j
i − j

, 1 ≤ i ≤ n.

Note that we have the following properties, for all i ,
I δi(i) = 1.
I δi(j) = 0, if i 6= j .
I deg δi(X ) = n − 1.

Lagrange interpolation takes the values ci and computes

f (X )←
n∑

i=1

ci · δi(X ).

N.P. Smart
Secure MPC Based on Secret Sharing Slide 8



Reed–Solomon Codes: Error Detection
If we get an error then when we perform the message recovery we
will definitely not get a polynomial of degree t
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Figure : Cubic function going through six points and one error point

But if the number of errors e ≤ t < n/2, then we detect all errors.
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Reed–Solomon Codes: Error Correction

We would like to be able to recover from errors.

Which we can do if e is forced to be smaller (n − t − 1)/2.

A naive way of doing this is to try all subsets of size n − e to try and
find a polynomial of degree t .

A better method is to use the Berlekamp-Welch algorithm (see any
decent textbook on coding theory).
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Shamir Secret Sharing
We will use Reed–Solomon codes to define a secret sharing
scheme

We map secrets s ∈ Fq to the set P by associating a polynomial with
the secret given by the constant term

For n parties we then distribute the shares as the elements of the
code word

I So party i gets si = f (i) for 1 ≤ i ≤ n.

Secret reconstruction is via

s ← f (0) =
n∑

i=1

si · δi(0).

Actually any t + 1 parties can recover the secret.
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Shamir Secret Sharing
A set of honest parties do not reveal their shares to anyone unless
they want to.

A passive adversary controlling a subset A wants to learn the secret
from the honest parties.

I This means t ≥ |A| to ensure privacy.
I Shamir is said to be a threshold secret sharing scheme
I If |A| ≤ t the adversary learns nothing at all about the secret.

The number of honest parties must be able to recover the secret, so
we have

n − |A| > t ≥ |A|

i.e.
|A| < n/2.

Same condition as error detection of Reed–Solomon codes.
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Shamir Secret Sharing
An active adversary is one which will lie about its shares

I In order for the honest parties to recover the wrong secret
To protect against this we use the error correcting property of
Reed–Solomon codes.

If the adversary is of size |A| ≤ (n − t − 1)/2 we can recover the
secret, i.e.

t < n − 2 · |A|

To maintain security we require |A| ≤ t

So
|A| < n − 2 · |A|

i.e.
|A| < n/3
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Linear Secret Sharing Schemes

A LSSS is a secret sharing scheme over Fq given by the following
construction.

We have a matrix M ∈ Fm×d
q and a vector v ∈ Fd

q and a map
χ : {1, . . . ,m} −→ {1, . . . ,n}.

To share a value s ∈ Fq one picks a vector k ∈ Fd
q such that

s = vT · k.

We also compute

s = (s1, . . . , sm)
T = M · k

with party j getting share si if χ(i) = j .
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Linear Secret Sharing Schemes

A set of parties A can recover the secret if the span of the rows i of
M indexed by χ(i) = j for j ∈ A contain v

i.e. (with an obvious notation) there is an xA such that

vT = xT
A ·MA

Note we have sA = MA · k and so we have

xT
A · sA = xT

A · (MA · k) = (xT
A ·MA) · k = vT · k = s.
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Linear Secret Sharing Schemes

A LSSS allows parties to compute arbitrary linear functions of the
underlying secrets without interaction

Let s and s′ be shared by s = M · k and s′ = M · k′ then
I s + s′ is shared by s + s′ = M · (k + k′) as s + s′ = vT · (k + k′).
I α · s for α ∈ Fq is shared by α · s = M · (α · k).

We write [s] to denote s is shared under the LSSS

We write
[z]← α[x ] + β[y ] + γ

to denote parties executing the above steps to produce a sharing of
z given sharings of x and y .
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Shamir is an LSSS

Shamir is a LSSS since we have

M =


1 1 . . . 1t

1 2 . . . 2t

...
...

1 n . . . nt

 ∈ Fn×(t+1)
q

v = (1,0, . . . ,0) ∈ Ft+1
q

and for all i we have χ(i) = i .
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Full Threshold Secret Sharing
Another important LSSS is that of full threshold.

A secret is shared among n players as

s = s1 + · · ·+ sn

This is also an LSSS with...

M =


1 0 . . . 0
0 1 . . . 0
...

...
0 0 . . . 1

 ∈ Fn×n
q

v = (1,1, . . . ,1) ∈ Fn
q

and for all i we have χ(i) = i .
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Replicated Secret Sharing (t ,n) = (1,3)
Many LSSS can define a given access structure.

Consider the following replicated scheme for the threshold
(t ,n) = (1,3) case

M =



0 1 0
0 0 1
1 0 0
0 0 1
1 0 0
0 1 0

 ∈ F6×3
q

v = (1,1,1) ∈ F3
q

and for all i we have χ(i) = di/2e.
Multiple parties hold the same share in this scheme (hence the
name replicated)
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Schur Product
Suppose each party i holds a vector of shares si for each secret s

I In Shamir this a single value.
The Schur product of two such sharings

(s1, . . . ,sn) and (s′1, . . . ,s
′
n)

is the local tensor of each parties

si ⊗ s′i .

In the case of Shamir this just means locally multiply the shares
together to get one share.

In our replicated example each party will have four elements in
si ⊗ s′i .

N.P. Smart
Secure MPC Based on Secret Sharing Slide 20



Multiplicative Secret Sharing

A LSSS is said to be multiplicative if given two sharings

(s1, . . . ,sn) and (s′1, . . . ,s
′
n)

of two secrets s and s′ then there is a set of vectors (v1, . . . ,vn)
such that

|vi | = |si ⊗ s′i |

and

s · s′ =
n∑

i=1

vi · (si ⊗ s′i)

i.e. the product is a linear sum of the Schur product.
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Shamir is Multiplicative

If t < n/2 then Shamir is multiplicative:

Given s and s′ shared by polynomials f and f ′ of degree t .

The Schur product held by party i is f (i) · f ′(i).

s · s′ is shared by the polynomial g = f · f ′ of degree 2 · t

The shares of g are g(i) = f (i) · f ′(i).

Since 2 · t < n the Lagrange coefficients give us how to express
s · s′ in terms of a linear combination of the g(i).
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The Replicated Example is Multiplicative
To share s = k1 + k2 + k3

I Party one holds (k2, k3).
I Party two holds (k1, k3).
I Party three holds (k1, k2).

Given two sharings of s and s′ the product is given by

s · s′ = (k1 + k2 + k3) · (k ′1 + k ′2 + k ′3)
= k1 · k ′1 + k1 · k ′2 + k1 · k ′3
+ k2 · k ′1 + k2 · k ′2 + k2 · k ′3
+ k3 · k ′1 + k3 · k ′2 + k3 · k ′3

= (k2 · k ′2 + k2 · k ′3 + k3 · k ′2)
+ (k3 · k ′3 + k1 · k ′3 + k3 · k ′1)
+ (k1 · k ′1 + k1 · k ′2 + k2 · k ′1)
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Full Threshold is Not Multiplicative

Not all LSSS are multiplicative.

For example the full threshold LSSS is not multiplicative.

Indeed a LSSS being multiplicative is a very special property.

For access structures for which there is a multiplicative LSSS we
can easily define MPC protocols....
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Maurer’s Multiplication Protocol

If we have a multiplicative LSSS then we can not only compute
linear functions (for free), we can also perform multiplication.

This forms the basis of many MPC protocols.

Step 1: Form the Schur product of the parties shares.
Step 2: Express the product as a sum of the local Schur products.
Step 3: Reshare the resulting full threshold sharing.
Step 4: Recombine the resultings shares locally.

Only step 3 requires interaction.

We explain with a Shamir and a Replicated example...
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Multiplication Shamir

We have si = f (i) and s′i = f ′(i) sharing s and s′.

Parties form the Schur products locally ti = si · s′i .

We know, as t < n/2, that there exists λi such that

s · s′ = λ1 · t1 + . . .+ λn · tn.

Parties now compute ui = λi · ti , so we actually have a full threshold
sharing of the product

s · s′ = u1 + . . .+ un.
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Multiplication Shamir
Party i now creates a sharing [ui ] of ui and sends the shares to each
player.

That is
I Party i generates a polynomial gi(X ) of degree t such that

gi(0) = ui .
I Party i sends party j the value gi(j).

The resulting sharing of ui we call [ui ].

All parties can then compute a Shamir sharing of degree t of the
product s · s′ by computing the linear function

[s · s′] = [u1] + . . .+ [un]

locally.
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Multiplication Replicated
We can do the same with our replicated scheme

Assuming we have sharings s = k1 + k2 + k3 and s′ = k ′1 + k ′2 + k ′3
I Party one holds (k2, k3), (k ′2, k

′
3).

I Party two holds (k1, k3), (k ′1, k
′
3).

I Party three holds (k1, k2), (k ′1, k
′
2).

We can now express the product as a full threshold sharing of terms
from the Schur products

s · s′ = u1 + u2 + u3

where party i has ui and

u1 = k2 · k ′2 + k2 · k ′3 + k3 · k ′2
u2 = k3 · k ′3 + k1 · k ′3 + k3 · k ′1
u3 = k1 · k ′1 + k1 · k ′2 + k2 · k ′1
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Multiplication Replicated
Each party then reshares ui with respect to the replicated scheme.

So (for example) party one forms [u1] by writing

u1 = v1 + v2 + v3

and then sends
I (v1, v3) to party two.
I (v1, v2) to party three.

Party one retains the values (v2, v3).

The final sum is then achieved as before

[s · s′] = [u1] + [u2] + [u3].

N.P. Smart
Secure MPC Based on Secret Sharing Slide 29



Multiplicative LSSS Based MPC

We can now define a passively secure MPC protocol for any
multiplicative LSSS based MPC

The MPC protocol will tolerate any set of adversaries who are not
qualified for the LSSS.

The protocol is information theoretically secure.

Take the function to be computed as f
I Write f as an arithmetic circuit over Fq

I i.e. As a sequence of + and · operations in Fq.
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MPC Protocol
Input: When parties enter a value x they just transmit the sharing
[x ] to the players.

Add: Parties can locally add shares

[x + y ] = [x ] + [y ]

as the secret sharing scheme is linear

Mult: Parties can multiply shares with one round of interaction

[x · y ] = [x ] · [y ]

using Maurer’s protocol

Output: For party Pi to obtain output of [x ] all parties just open their
shares of [x ] to Pi .
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Other Multiplication Protocols

There are other methods to perform multiplication which we now
outline

I Damgård-Nielsen method.
I Beaver Method.

Both methods use a form of “pre-processing”

In both cases we assume our base sharing [x ] is given by a LSSS
I (M,v).

Given [x ] and [y ] we want to compute [z] = [x · y ].
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Damgård-Nielsen Method

This basically uses a second auxiliary secret sharing scheme

The auxiliary scheme we denote by 〈x〉 and it denotes a full
threshold scheme.

Suppose we have a method to produce two random sharings of the
same value

[r ] and 〈r〉

So
I r = vT · k.
I r = M · k = (r1, . . . , rn).
I 〈r〉 = (r1, . . . , rn) s.t. r = r1 + . . .+ rn. This can be done

non-interactively using a PRSS (see later).

N.P. Smart
Secure MPC Based on Secret Sharing Slide 33



Damgård-Nielsen Method
To multiply we then do the following for a sharing [x ] and [y ] given by
(x1, . . . ,xn) and (y1, . . . ,yn).

I Form the local Schur products xi ⊗ yi .
I Think of the product z as a full threshold sum 〈z〉 via the Schur

products
z = z1 + . . .+ zn

I Form 〈d〉 = 〈z〉+ 〈r〉
I Open 〈d〉 to player one (say)
I Player one now broadcasts d to all players
I All players compute

[z] = d − [r ]

Note this takes two rounds of communication
I But we only transmit 2 · (n − 1) finite field elements in total.
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Beaver Multiplication

A third method of multiplication produces a one round online
multiplication protocol, but requires some (potentially) expensive
offline pre-processing

Assume we can produce random triples (so called Beaver Triples)

[a], [b], [c]

where
I a,b are random finite field elements unknown to anyone
I c = a · b.

This production can be done in an offline phase using one of the
previous multiplication protocols, or via other techniques (see later)
when the LSSS is not multiplicative.
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Beaver Multiplication

To multiply [x ] and [y ] we take a new Beaver Triple ([a], [b], [c]) and
execute

I All parties open [ε] = [x ]− [a].
I All parties open [δ] = [y ]− [b].
I Compute

[z] = [c] + ε · [b] + δ · [a] + ε · δ.

Notice that ε is a one-time pad encryption of x under a

And that δ is a one-time pad encryption of y under b

The final computation is a linear function and so can be computed
locally.
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Beaver Multiplication

Multiplication is correct because...

[z] = [c] + ε · [b] + δ · [a] + ε · δ
= [c] + ([x ]− [a]) · [b] + ([y ]− [b]) · [a] + ([x ]− [a]) · ([y ]− [b])
= [c] + ([x · b]− [a · b]) + ([y · a]− [b · a])

+ ([x · y ]− [x · b]− [a · y ] + [a · b])
= [c]− [b · a] + [x · y ]
= [a · b]− [b · a] + [x · y ]
= [x · y ]
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Passive to Active

We really want an actively secure protocol.

The traditional way of doing this, in the information theoretic setting,
is to use Verifiable Secret Sharing

We restrict to LSSS which are strongly multiplicative
I Think Shamir when t < n/3

And then use error correcting properties to correct for adversarial
errors, or work out who the adversary is.
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Passive to Active

This technique is relatively slow, but does lead to robust protocols.

Modern method is to be satisfied with active-with-abort security.

So we just want to detect an error, not correct it.

We are also prepared to give up on pure information theoretic
protocols, if it gives us extra performance.
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First Protocol

The first actively secure protocol we give is actually the most
modern

I Fast Large-Scale Honest-Majority MPC for Malicious
Adversaries

I Koji Chida and Daniel Genkin and Koki Hamada and Dai
Ikarashi and Ryo Kikuchi and Yehuda Lindell and Ariel Nof

I https://eprint.iacr.org/2018/570

The basic idea is to authenticate each share with a shared MAC
value

I This idea is much older

The protocol works when we have any method to perform passive
multiplication protocol, e.g. Maurer.
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Set Up
We assume we have a multiplicative LSSS scheme.

Elements x ∈ Fq when in secret shared form are denoted by [x ].

We can perform linear operations for free

[z]← α · [x ] + β · [y ] + γ.

Multiplication can be done via a passively secure protocol

[x · y ]← [x ] · [y ].

Our aim is an active-with-abort secure protocol.
I We give rough ideas at all stages, some details may be

wrong/insecure
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Authenticating a Computation Via MACs

A basic idea behind many protocols is the following.

Suppose we have a global key α ∈ Fq

To authenticate x ∈ Fq we use the “MAC” γ = α · x .

If we keep x , γ and α hidden from the adversary, but make the
relationship consistent, then the adversary cannot change x without
also changing either γ or α or both.
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Initialization Step
We first have an initialization stage:

Init:
I Player Pi generates αi ∈ Fq.
I Player Pi shares [αi ] to all players.
I The players compute [α] = [α1] + . . .+ [αn].

Note, all players now have a sharing of a value [α] that no one
knows.

In our protocol we will store a secret value x as a double sharing
〈x〉 = ([x ], [α · x ]).

The computation of [α] could be done via a PRSS (see later)
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Arithmetic on 〈x〉 Shares
If [·] is a LSSS then so is the authenticated sharing.

〈x〉+ 〈y〉 = ([x ] + [y ], [α · x ] + [α · y ])
〈x〉+ c = ([x ] + c, [α · x ] + c · [α])
a · 〈x〉 = (a · [x ],a · [α · x ])

We can also execute a passively secure multiplication protocol as
follows, given a passive multiplication protocol for [·].

I On input of 〈x〉 and 〈y〉.
I Compute [z] = [x · y ] = [x ] · [y ] using the passive protocol for [·].
I Compute [α · z] = [y ] · [α · x ], again using the passive protocol

for [·].
I Return 〈z〉 = ([z], [α · z]).
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Random Values

We need a method to generate random “authenticated” values 〈r〉
I Player Pi generates ri ∈ Fq.
I Player Pi shares [ri ] to all players.
I The players compute [r ] = [r1] + . . .+ [rn].
I The players execute the passively secure multiplication protocol

to generate [α · r ].
I The players now have 〈r〉.

Later we will see how to replace the first three steps using a PRSS.
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Input Values

Suppose player Pi wants to enter a value x into the computation

I Take a random authenticated value 〈r〉 = ([r ], [α · r ])
I The parties “open” the value [r ] to player i .
I Player Pi broadcasts e = x − r .
I The players set 〈x〉 = e + 〈r〉.

Note that the value broadcast by player Pi is a one-time pad
encryption of x under the key r .
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Output Values

Outputting values is trivial, but before doing so we need to check
that the adversary has not cheated.

The only places the adversary can cheat is either in producing a
random value (by not entering a valid sharing at some stage), or in
the multiplication protocol.

So we need to check all input values have been 〈·〉-shared correctly,
as has the output from all multiplication gates.

Let the input wires be {〈vm〉}Nm=1.
Let the output wires of all multiplication gates be {〈zk 〉}Mk=1.
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MAC Checking
The checking protocol proceeds as follows:

I The parties agree on random values a1, . . . ,aM , b1, . . . ,bN ∈ Fq
I Locally compute

[u] =
M∑

k=1

ak · [zk ] +
N∑

k=1

bk · [vk ]

[w ] =
M∑

k=1

ak · [α · zk ] +
N∑

k=1

bk · [α · vk ]

I Open [α] to all parties
I Compute [T ] = [w ]− α · [u].
I Generate a random shared value [r ] as before
I Compute [Z ] = [r ] · [T ].
I Open [Z ], if Z = 0 the all is OK, otherwise abort.

Note that T = 0, but we multiply it by r before opening to ensure no
information in T leaks.
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Online vs Offline

The previous protocol was essentially twice as slow as the passive
variant

I For each active multiplication you had to run two passively
secure multiplication protocols.

Sometimes we are prepared to be slower overall, if we can make
“online” computation faster.

This can be done within the above framework using the Beaver
Triples from earlier.

An Offline Phase produces Beaver Triples

An Online Phase consumes them.

N.P. Smart
Secure MPC Based on Secret Sharing Slide 49



Online Method

The active protocol is the same as the one above except we now
multiply using Beaver Triples

Assume we have sharings 〈a〉, 〈b〉, 〈c〉 which are produced in an
actively secure manner.

We can then do the Beaver multiplication trick on the 〈·〉 sharings

I All parties open 〈ε〉 = 〈x〉 − 〈a〉 (Just the ε value not the MAC!)
I All parties open 〈δ〉 = 〈y〉 − 〈b〉 (Just the δ value not the MAC!)
I Compute

〈z〉 = 〈c〉+ ε · 〈b〉+ δ · 〈a〉+ ε · δ.
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Offline Method

Assume we have a method to produce passively secure
multiplication triples wrt 〈·〉 sharings.

We need to ensure these are (almost) actively secure

We do not at this stage care if the MACs are correct
I Since these are checked in the MAC Checking phase

We need to check that if we are given (〈a〉, 〈b〉, 〈c〉) that c = a · b.

We do this by sacrificing
I We sacrifice one triple so as to check another
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Sacrificing
Suppose we have two passively secure triples

(〈a〉, 〈b〉, 〈c〉) and (〈f 〉, 〈g〉, 〈h〉)

we want to confirm that c = a · b

Pick a random value t known to all players, but controlled by none

Then the parties compute
I Open 〈ρ〉 = t · 〈a〉 − 〈f 〉 (Again just the ρ value not the MAC)
I Open 〈σ〉 = 〈b〉 − 〈g〉 (Again just the σ value not the MAC)
I Compute

〈e〉 = t · 〈c〉 − 〈h〉 − σ · 〈f 〉 − ρ · 〈g〉 − σ · ρ.

I Open 〈e〉 (Again just the e value not the MAC)
I Reject if e 6= 0.
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MAC Checking

A problem with the previous protocol (without Beaver triples) was
that it was not reactive

When we executed MAC Checking we opened 〈α〉.

This meant we could not continue with a computation after we had
executed MAC Checking.

With Beaver multiplication this is much easier.
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MAC Checking Beaver Multiplication

We simply have to check that every opened value has a valid MAC
shared between all parties.

We no longer check multiplication is correct directly
I This is implied by the sacrificing and the MAC checking we are

going to do
Note we will apply this MAC check even to the values opened during
sacrificing

Suppose we have a set of open values {ai}Mi=1

We need to check that the parties hold correct shares of [γi ] = [α ·ai ]
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MAC Checking Beaver Multiplication
MAC Checking then proceeds as follows:

I The parties agree on random values b1, . . . ,bM ∈ Fq.
I Locally compute

a =
M∑

i=1

bi · ai ,

[γ] =
M∑

i=1

bi · [γi ],

I Compute [ω] = [γ]− [α] · a.
I The parties open the value [ω] (via a commitment protocol first

to avoid rushing adversaries)
I If ω = 0 then MAC Check passes
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Trading IT Security For Speed

The above protocol made use of information theoretically secure
primitives only

In practice we do not really care about this

We want SPEED

A major issue was generating random sharings of values.
I This required expensive interaction

We can however do this based on PRFs (block ciphers)
non-interactively

I Have potential high cost of setting up the keys though
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Pseudo-Random Secret Sharing: Shamir

A PRSS is a scheme for a bunch of parties to (without interaction)
agree on a sharing of a random value.

We use a PRF with keyspace K , message space S and codomain
Fq,

ψ :

{
K × S −→ Fq
(kA,a) 7−→ ψ(kA,a).

For every set A ⊂ {1, . . . ,n} = P of size n − t define a polynomial of
degree t s.t.

fA(0) = 1 and fA(i) = 0 for all i ∈ P \ A.

Also for each set A define a key kA to the PRF and give kA to every
party in A.
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Pseudo-Random Secret Sharing: Shamir
To generate a new Shamir sharing the parties select the “next” value
a in S which is unused and compute

si ←
∑
i∈A

ψ(kA,a) · fA(i).

The underlying polynomial is hence given by

f (X ) =
∑
i∈A

ψ(kA,a) · fA(X )

due to the choice of the fA(X ).

The underlying secret is

s =
∑

A

ψ(kA,a) · fA(0) =
∑

A

ψ(kA,a).
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Pseudo-Random Secret Sharing: General

This generalised to any LSSS as follows

For every set A which is a complement of a maximally unqualified
set we find a sharing sA of the value of one such that

I The sharing has zero contribution from all parties in P \ A.
This is always possible

sA is the analogue of the Shamir sharing (fA(1), . . . , fA(n)) above.

For every set A we also distribute a key kA to every player in A.
I This is the expensive bit, as the number of keys could be

exponential depending on the access structure of the LSSS.
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Pseudo-Random Secret Sharing: General
To form a random sharing of a new value we compute the local
shares for player i as

si ←
∑
i∈A

ψ(kA,a) · sA|i .

where sA|i denotes the components in sA which belong to player i .

The underlying secret is

s =
∑

A

ψ(kA,a) · 1 =
∑

A

ψ(kA,a),

since
[s] =

∑
A

ψ(kA,a) · [sA] = [
∑

A

ψ(kA,a)].
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Using Any Secret Sharing Scheme
The previous MPC protocol (Beaver+Reactive MACCheck) can be
applied to any secret sharing scheme

As long as we can produce the Beaver Triples

In particular we can do this for full threshold LSSS

To produce the Beaver triples we use Somewhat Homomorphic
Encryption (SHE).

This is called the SPDZ protocol
I Multiparty Computation from Somewhat Homomorphic

Encryption
I I. Damgard and V. Pastro and N.P. Smart and S. Zakarias
I https://eprint.iacr.org/2011/535
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SPDZ Set Up

Assume n parties of which n − 1 can be malicious.

Assume a global (secret) key α ∈ Fp is determined

Each party i holds αi with

α = α1 + . . .+ αn.

We write this additive sharing as [·].
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Secret Sharing

All data is represented by elements in Fp.

A secret value x ∈ Fp is shared between the parties as follows
I Party i holds a data share xi

I Party i holds a “MAC” share γi(x)
such that

x = x1 + · · ·+ xn and α · x = γ1(x) + · · ·+ γn(x).

We write 〈x〉 = ([x ], [α · x ]) as before

In what follows “partially opening” a share 〈x〉 means revealing xi
but not the MAC share.
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Secret Sharing

Note we can share a public constant v by
I Party 1 sets x1 = v
I Party i 6= 1 sets xi = 0
I Party i sets γi(v) = αi · v .
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Addition

Suppose we have two shared values 〈x〉 and 〈y〉.

To compute the result 〈z〉 of an addition gate the parties individually
execute

I zi = xi + yi

I γi(z) = γi(x) + γi(y)
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Multiplication

To multiply 〈x〉 and 〈y〉 to obtain 〈z〉 we work as follows:
I Take a new triple (〈a〉, 〈b〉, 〈c〉) off the precomputed list.
I Partially open 〈x〉 − 〈a〉 to obtain ε = x − a.
I Partially open 〈y〉 − 〈b〉 to obtain ρ = y − b.
I Locally compute the linear function

〈z〉 = 〈c〉+ ε · 〈b〉+ ρ · 〈a〉+ ε · ρ.

This is the same Beaver trick as before.

We verify correctness as before using MAC Check.
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Preprocessing – SPDZ via SHE
We return to the preprocessing, which we do for large finite fields
using SHE

I Following is a naive version, the real version has lots of bells
and whistles.

We assume an SHE scheme with keys (pk, sk) whose plaintext is Fp

I In practice for efficiency work on vectors of such elements in a
SIMD fashion

Given ct1 = Encpk(m1) and ct2 = Encpk(m2) we have

Decsk(ct1 + ct2) = m1 + m2

and
Decsk(ct1 · ct2) = m1 ·m2.

We only need to evaluate circuits of multiplicative depth one.
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Preprocessing – SPDZ via SHE

We require a little more of our SHE scheme though

We assume a shared SHE public key pk for an SHE scheme.
I Party i holds a share ski

I Together they can decrypt a ciphertext ct via Decsk1,...,skn(ct).
I Each party computes Encpk (αi) and broadcasts this.

Last step needed so that each party has Encpk (α).
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Preprocessing – SPDZ via SHE: Reshare
Given a ciphertext ct encrypting a value m we can make each party
obtain

I An additive share mi , s.t. m =
∑

mi

I And (if needed) a new fresh ciphertext ct′ encrypting m.

Reshare(ct)
I Party i generates a random fi and transmits ctfi = Encpk(fi).
I All compute ctm+f = ct +

∑
ctfi .

I Execute Decsk1,...,skn(ctm+f ) to obtain m + f .
I Party 1 sets m1 = (m + f )− f1.
I Party i 6= 1 sets mi = −fi .
I Set ct′ = Encpk(m + f )−

∑
ctfi .

Use some “default” randomness for the last encryption.
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Preprocessing – SPDZ via SHE: Generating 〈a〉 and
〈b〉

We can generate our sharing 〈a〉 as follows

I Party i generates a random ai and transmits ctai = Encpk(ai).
I All compute cta =

∑
ctai .

I All compute ctα·a = ctα · cta.
I Execute Reshare on ctα·a so party i obtains γi(a).

Note this can also be executed to obtain 〈b〉.
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Preprocessing – SPDZ via SHE: Generating 〈c〉
This is also easy

I We have cta and ctb.
I All compute ctc = cta·b from cta · ctb.
I Get shares ci via executing Reshare on ctc ; also obtaining a

fresh ciphertext ct′c .
I All compute ctα·c = ctα · ct′c .
I Execute Reshare on ctα·c so party i obtains γi(c).

This is efficient despite using SHE technology because we only
compute with depth one circuits.

Similar tricks with SHE allow us to perform other preprocessing
making the computation phase even faster.
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Course Summary

We have introduced MPC

We have seen how MPC can be done via FHE, but this is slow

We have seen how two party MPC can be done using Garbled
Circuits

We have seen how many party MPC can be done via Linear Secret
Sharing Schemes
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