
FHE-MPC Notes

Lecturer: Nigel Smart Lecture # 1
Scribe: Joop Van de Pol 10th October 2011

Lattices

A lattice consists of all linear combinations with integer coefficients of some set of linearly inde-
pendent vectors in a Euclidean space. If b1, . . . ,bn ∈ Rn are linearly independent, then the lattice
spanned by these vectors is given by L = Zb1 + . . . + Zbn = {

∑n
i=1zibi : zi ∈ Z}. The vectors

b1, . . . ,bn are called a basis of the lattice. Such a basis is generally not unique. For example, the
vectors −b1,b2, . . . ,bn and the vectors b1, . . . ,bn−1, (b1 + bn) both span the same lattice as our
original vectors.

You can think of a basis b1, . . . ,bn as the matrix containing these vectors as columns, i.e.,
B = (b1|b2| . . . |bn). Then, the lattice can be described as the set of all vectors Bz for z ∈ Zn.
Now, two bases B and B′ are equivalent (they span the same lattice) if and only if there exists
some unimodular matrix U (U ∈ GLn(Z)) such that B′ = BU . Since unimodular matrices U have
determinant det(U) = ±1, it immediately follows that for any two equivalent bases B and B′ we
have that det(B′) = det(BU) = det(B). Thus, the quantity |det(B)| is independent of the chosen
basis. It can hence be written as det(L) and it is called the fundamental volume of the lattice.

Because a lattice is a discrete subgroup of Rn, there must be a lattice vector that has a non-zero
minimal length. For a given lattice L, let us define this length as the first minimum of the lattice:
λ1(L) = min{‖x‖ : x ∈ L,x 6= 0}, where ‖.‖ can be any norm (but is most commonly the Euclidean
norm). Note that such a ‘shortest’ vector is not unique, because if x is a shortest lattice vector, then
−x is a shortest lattice vector as well.

Besides the first minimum, there is also a second minimum, a third minimum and so on. However,
some care must be taken in defining these successive minima. It may very well be that the ‘second
shortest’ vector in a lattice is merely a multiple of the shortest vector in the lattice. Therefore,
linearly independence is used to exclude these cases. Formally, the i-th minimum is defined as

λi(L) = min{max{‖x1‖, . . . , ‖xi‖} : x1, . . . ,xi ∈ L \ {0} linearly independent}.

Lattice problems

The concept of a shortest vector gives rise to the following classical lattice problem:

Shortest Vector Problem (SVP): Given a basis B for a lattice L = L(B), find a lattice vector
v ∈ L such that ‖v‖ = λ1(L).

Another classical lattice problem is the following, which can be seen as the inhomogeneous version
of SVP:

Closest Vector Problem (CVP): Given a basis B for a lattice L = L(B) and some vector x ∈ Rn

(generally not in L), find a lattice vector v ∈ L such that ‖x− v‖ is minimal.

Both of these problems are NP-hard, even when allowing approximations within constant factors
(as well as some slowly increasing sub-polynomial functions). In fact, it is even considered to be a
hard problem to find the shortest length λ1(L) of non-zero vectors of a lattice L.

In both of these problems, you are given a lattice basis B. Generally, a lattice is almost always
represented by one of its bases. However, since each unimodular matrix U gives rise to a new basis
of the same lattice, it follows that any lattice has infinitely many bases as soon as the dimension
is at least 2. While these bases are equivalent, they are not equal. In fact, there exist ‘good’ and

‘bad’ bases for a lattice L. Informally, good means that the basis consists of short vectors that
are somewhat orthogonal to each other, whereas bad means that it consists of long vectors that
generally point in the same (or opposite) direction. The idea is that SVP and CVP become easier to
solve when you have a good basis at your disposal. In the case of SVP, ideally the shortest vector is
already in your basis, but there are other advantages to having a good basis as well. In the case of
CVP, heuristic methods such as Babai’s nearest plane algorithm and the embedding technique give
better results for better bases.

Basis reduction in theory

Ideally, we would like a basis where ‖b1‖ = λ1(L), ‖b2‖ = λ2(L) and so forth. However, from
dimension n = 5 on such bases do not have to exist. Furthermore, this would amount to solving
SVP outright, which is a hard problem. Therefore, we instead focus on the question: how can we
turn a bad basis into a good basis? This is what so-called basis reduction methods try to achieve.

The aim is to retrieve a basis which consists of short and orthogonal vectors. However, since
we know that the volume of a lattice is a fixed quantity that is independent of the choice of basis,
‘short’ and ‘orthogonal’ must be related. Indeed, when considering a fully orthogonal basis B, its
determinant will be equal to the product of the length of the vectors b1, . . . ,bn. This suggests that
the more orthogonal basis vectors get, the shorter they must be as well. Therefore, let us focus on
the orthogonality of our basis vectors for now.

Fortunately, we have a tool at our disposal that allows us to orthogonalize bases of vector spaces.
This tool is called the Gram-Schmidt process, which, on input of a basis of a vector space, produces
an orthonormal basis spanning the same space. Since we are only interested in orthogonal, we forget
the normalization for now. The Gram-Schmidt process works iteratively, as follows:

b∗
1 := b1

b∗
i := bi −

i−1∑
j=1

µijb∗
j , where µij =

〈bi,b∗
j 〉

‖b∗
j‖2

for all 1 ≤ j < i ≤ n.

We were working with lattices, where only integer multiples of our basis vectors are allowed. However,
the quantities µij are generally not integers and hence the Gram-Schmidt vectors b∗

i are not lattice
vectors. Therefore, we are going to do the next best thing: instead of using the Gram-Schmidt
vectors b∗

i , we will consider the vectors b′
i = bi −

∑i−1
j=1bµijeb∗

j , where b.e rounds to the nearest
integer (rounding up if this is not unique). Note that applying the Gram-Schmidt process to our
new vectors b′

1, . . . ,b
′
n results in the same vectors b∗

i as our original basis, but the Gram-Schmidt
coefficients µij all satisfy |µij | ≤ 1/2. In some sense, our new basis b′

1, . . . ,b
′
n is as close to the Gram-

Schmidt basis as possible, while still spanning the lattice. A basis B such that the Gram-Schmidt
coefficients satisfy |µij | ≤ 1/2 is called size-reduced.

However, the concept of a size-reduced basis is not enough. The quality of our size-reduced basis
is highly dependent on the lengths of the Gram-Schmidt vectors, which are in turn highly dependent
on the order of our basis vectors. As a different order of basis vectors gives different results, we
would now like to be able to improve our basis by changing the order of basis vectors in a smart
way. It was not known that efficient algorithms of this kind were possible until the invention of the
LLL-algorithm in 1982, which is the first polynomial-time basis reduction algorithm. It turns out
that being too greedy in the ordering of the vectors leads to inefficient algorithms. So how does the
LLL-algorithm do it?

What happens when basis vectors bi and bi+1 are swapped? Only b∗
i and b∗

i+1 would change,
and the new b∗′

i = b∗
i+1+µi+1,ib∗

i . Therefore, the creators of the LLL-algorithm added the condition

δ‖b∗
i ‖2 ≤ ‖b∗

i+1 + µi+1,ib∗
i ‖2, (1)

where δ ∈ (1/4, 1) (default δ = 3/4). This condition basically says that swapping vectors bi and bi+1

will not gain you much. The LLL-algorithm (in its simplest form) repeatedly uses a procedure to size-

2

reduce the basis using the Gram-Schmidt vectors while swapping vectors that violate condition (1)
until no vector pairs violate the condition anymore.

The proof that the LLL-algorithm terminates (in polynomially many steps) is based on some
integer quantity that strictly decreases with each swap and can hence only decrease a fixed number of
times. When the LLL-algorithm terminates, it results in a basis b1, . . . ,bn such that, approximately,
b1 ≤

(
4
3

)(n−1)/2
λ1(L). For n = 2, LLL is equivalent to Gaussian reduction, continued fractions and

the Euclidean GCD algorithm.
Now, LLL considers two vectors at a time and computes the gain of swapping these. Schnorr

came up with a blockwise generalization of this procedure, which resulted in the algorithm BKZ. In
BKZ, instead of considering only 2 vectors at a time, you consider m vectors at a time, where m
is called the blocksize. It constructs a so-called projected lattice of dimension m using the vectors
xl, . . . ,xl+m−1, for some 1 ≤ l ≤ n − m + 1 where

xi := bi −
l−1∑
j=1

µijb∗
j ,

with the µij and b∗
i as before and l ≤ i ≤ l+m−1. The xi are similar to the Gram-Schmidt vectors,

with only the contribution of the first l − 1 basis vectors removed. BKZ then uses a subprocedure
to find the shortest vector (or close to it) in the lattice spanned by the vectors xl, . . . ,xl+m−1). It
then decides in a way similar to LLL whether this vector should be inserted into the basis or not.
BKZ repeats this procedure for varying l until no change occurs.

BKZ uses a procedure that actually solves SVP, but in a lattice of lower dimension. In practice
enumeration methods are often used to solve SVP, but it is also possible to use sieving or other kinds
of SVP-solvers. These routines are generally exponential in m. Note that, for m = 2, BKZ is equal
to LLL, whereas for m = n, BKZ solves SVP exactly. BKZ will return a better approximation to
the shortest vector as m increases, but its complexity increases (at least) exponentially in m as well.

Basis reduction in practice

People that used basis reduction algorithms for practical applications eventually discovered that
the algorithms inexplicably found vectors of significant smaller norm than their theoretical upper
bounds. Why are is the practical behaviour of basis reduction algorithms important? Basis reduction
methods are the most prominent tools to attack lattice-based cryptosystems, and specifically, fully
homomorphic encryption schemes that are often based on lattices. Understanding the practical
performance of basis reduction algorithms allows us to understand the security of these lattice-based
cryptosystems against such attacks.

In a Eurocrypt paper of 2008, Gama and Nguyen examined this unexpectedly good performance
in more detail and found that, experimentally, these basis reduction algorithms do indeed perform
much better than the theoretical upper bounds, but still within limits. In a 2011 Asiacrypt paper,
Chen and Nguyen expand these results. To understand these results we must first have a way to
describe the practical performance of basis reduction algorithms. Since finding the first minimum
λ1(L) is in itself a hard problem, this quantity is generally not known. Hence, our basis might return
some short vector, but we will have no idea how its length compares to the length of a shortest vector
of the lattice. Therefore, the following lattice problem is often considered when working with basis
reduction algorithms:

Hermite Shortest Vector Problem (HSVPα): Given a basis B for a lattice L = L(B) and
some approximation factor α, find a lattice vector v ∈ L such that ‖v‖ ≤ α det(L)1/n.

This problem is related to a classical result by Hermite, who showed that λ1(L)2 ≤ γn det(L)1/n,
where γn is Hermite’s constant in dimension n. In fact, the length of the shortest vector is propor-
tional to det(L)1/n. Given any positive real number t > 0, let tL denote the lattice obtained by
scaling all vectors of L by t. It is easily seen that the shortest length scales homogeneously λ1(tL) =

3

tλ1(L) and that the n-th root of the volume scales by n
√

det(tL) = n
√

tn det(L) = t det(L)1/n. Since
we can easily compute det(L), we know the approximation factor α that our algorithms achieve.

In their 2008 paper, Gama and Nguyen showed that in practice, the Hermite factor α that basis
reduction algorithms such as LLL and BKZ achieve is roughly δn for some δ, which is called the
Hermite root factor. Thus, it is still exponential in the dimension of the lattice. However, they also
showed that the Hermite root factor δ achieved by the algorithms was much lower in practice than
the upper bounds from theory. LLL theoretically finds a vector of length, approximately, ‖b1‖ ≤
(4/3)(n−1)/4 det(L)1/n ≈ 1.075n det(L)1/n. In practice, it finds a vector of length, approximately,
‖b1‖ ≤ 1.022n det(L). For BKZ with blocksize 20 this gap was about 1.033n in theory versus 1.012n

in practice. Gama and Nguyen further claimed that a Hermite root factor of δ = 1.01 seemed
possible, whereas δ = 1.005 did not seem possible yet. In the Asiacrypt 2011 paper, Chen and
Nguyen claim that δ = 1.005 is just about solvable in practice, whereas δ = 1.001 will not be
solvable by BKZ.

Further reading

For more information on basis reduction algorithms in practice, consider the EC2008 paper by Gama
and Nguyen as well as the AC2011 paper by Chen and Nguyen. For a mix between theoretical and
practical basis reduction, consider some of Schnorr’s papers on the subject (from the 1980’s onward).
The chapter ‘Lattice-based Cryptography’ by Micciancio and Regev is a good introduction to this
subject and can be found on Regev’s website (http://www.cs.tau.ac.il/~odedr/).

For the applications of lattices to (the cryptanalysis of) other cryptosystems, search for the
Coppersmith method or papers by Boneh and Durfee or Alex May. It is also interesting to see how
lattices were used to break knapsack-based cryptosystems.

4

