
FHE-MPC Notes

Lecturer: Nigel Smart Lecture # 3
Scribe: David Bernhard

Topics. Introduction to algebraic number theory and Galois theory; the mathematical
background of the Gentry-Halevi-Smart and Smart-Vercauteren FHE schemes.

“Picking the right field”: In ring-LWE the message space is F2(X)/F (X), R = Z[X]/F (X).
Over Q, F (X) is irreducible but over F2 probably not.

Algebraic Number Theory. Let K = Q[X]/F (X) where F is an irreducible polynomial.
Then K is a field, it is called a number field. In K, there are many subrings for example
Z[X]/F (X) which we can write as Z[Θ] where Θ is a “formal root”. Then K ∼= Q[Θ]. There
is a subring OK satisfying Z[Θ] ⊆ OK ⊂ K, called the algebraic integers and is the largest
subring with certain nice properties. (The name comes from the fact that Z = OQ.)

Recall that an ideal i in a ring R is a set i ⊆ R such that for all i1, i2 ∈ i we also have
i1 + i2 ∈ i and for all i ∈ i, r ∈ R we have r.i ∈ i. In OK we have unique factorisation, that
is for all ideals i we have i =

∏
pei

i where the pi are prime ideals and the ei integers.
Fact. For a prime ideal p of OK we have N(p) = pf where N is the norm (number of

elements in R/p), p is a prime number and f an integer. In fact OK/p ∼= Fpf . For example,
taking R = Z and i = (3) we have R/(3) = F3.

Dedekind criterion. If p ∈ Z is a “good prime”, that is F (X) ≡
∏l

i=1 Fi(X) mod p
where the Fi are irreducible, then the ideal p = (p) factors as p = p1 . . . pl and R/pi =
Fp[X]/Fi(X). (The CRT says that R/p =

∏l
i=1 R/pi.) We can write pi = {p.r1 +

Fi(X).r2|r1, r2 ∈ R} and abbreviate this to pi = (p, Fi) which we call the two-element
representation.

(In the SV and GH FHE schemes, the secret key is some γ ∈ R and the public key a
two-element representation of γ.)

Galois groups. If K = Q(Θ) = Q[X]/F (X) and this contains all the deg(F ) roots of
F (X) then K is Galois. In this case we have (p) = pe1

1 . . . pel
l ⇒ e1 = e2 = . . . = el and

N(p1) = N(p2) = . . . = N(pl). Furthermore there is a Galois group

Gal(K/Q) := {a ∈ Aut(K)|a↓Q = idQ}

which is a subset of the permutation group on the roots of F (X).
Example. F (X) = Φm(X), a cyclotomic polynomial. Then K is Galois and Φm =

∏
Fi,

furthermore a p is good if and only if p - m.
The roots of Φm are ζai

m ∈ (Z/mZ)∗. The function κai : x 7→ xai permutes these roots
and in fact Gal(K/Q) = {κai |ai ∈ (Z/mZ)∗}.

Fact. All finite fields of the same size are isomorphic, in fact the only finite fields up to
isomorphism are Fpd where p is prime and d an integer.



Computing in finite fields. We wish to compute in Fpn = Fp[X]/G(X) where deg(G) =
n. (For example, in AES we have p = 2 and G(X) = X8 + X4 + X3 + X + 1.) For F (X) =
Φm(X) the plaintext space will be Z[Θ] mod p which is isomorphic to

∏l
i=1 Fp[X]/Fi(X).

Fact. If K = Q[X]/Φm(X) then OK = Z[Θ].
If a(θ) mod (p, F ) is mapped under this isomorphism we wnd up with a vector(

a1(Θ) mod (p, F1(Θ)), . . . , al(Θ) mod (p, Fl(Θ))
)

If we are careful in the values we pick we get F = Φm of degree d and Z[Θ] mod p ∼= (Fpd)l.
If n|d then Fpn ⊂ Fpd so in fact we have (Fpn)l ⊂ (Fpd)l and these maps are efficient so we
can work with l-vectors of plaintexts at once.

A global view. Taking Q[X]/F (X) as a degree n Galois extension of Q, the Galois
group is a transitive group of permutations on the roots, i.e. for all 1 ≤ i < j < n there is
a σ ∈ Gal such that σ.ri = rj (where ri, rj are the i-th and j-th roots).

A local view. Looking at Fp[X]/Fi(X) as a degree-d extension of Fp we get Gal ∼= Cd,
the cyclic group of order d. It has as generator the Frobenius map x 7→ xp.

Combining the views. If F = Φm then Gal(K/Q) contains the Frobenius map. It
will permute the roots in each subclass induced by a Fi but not move them between these
subclasses. So what is a map that moves roots from one subclass to another? Exactly d
of the maps of form x 7→ xi are of the form x 7→ xpd

as pd ≡ 1 mod m. So Gal(K/Q)
contains a group generated by p, called the decomposition at p and written Gp. Consider
the group H = Gal/Gp.

Examples

Example 1 Let m = 11 and p = 23. Then Φm(X) = (X − r0) . . . (X − r9) splits into
linear factors. This gives us 10 copies of F23 with componentwise addition and multipli-
cation. To move components around we note that pd = 22 ≡ 0 mod m and Gp = (1) so
Gal/Gp = Gal. By transitivity there must be a map that takes each component to each
other one.

Suppose we have two vectors v and w and want to compute v1 + w9. We can multiply
v with (1, 0, . . . 0), apply a permutation to w that brings w9 into the first component then
multiply this with (1, 0, . . . , 0) too and add the two resulting vectors to get (v1+w9, 0, . . . , 0).
We know that we can add and multiply homomorphically (on ciphertexts) so we only need
a way to compute the permutation homomorphically.

Example 2 Let m = 31 and p = 2. We find 25 ≡ 1 mod m so d = 5. Φm(X) has 6
factors of degree 5 each and Gal ∼=< 2 > × < 6 >. Note that Gal/ < 2 >=< 6 >⊂ Gal. If
we pick the Fi such that Fi(x6i

) ≡ 0 mod F1(X) then σ6 : x 7→ x6 moves (m0, . . . ,m5) 7→
(m5,m0, . . . ,m4) and from this rotation we can get all others. The inverse of σ6 which we
could call σ1/6 is (σ6)5 because (σ6)6 ≡ 1 mod m.

2



Example 3 Let m = 257 and p = 2. Then m|(216−1) and so d = 16. H = Gal/ < 2 >
has 16 elements and is generated by a coset of 3 as 38 ≡ 136 mod m which is not an element
of < 2 > although 316 ≡ 249 ≡ 212 mod m. We can compute that

σ3.(m0, . . . ,m15) = ((m15)2
11

,m0,m1, . . . ,m14)

Similarly
σ1/3.(m0,m1, . . . ,m15) = (m1,m2, . . . ,m15, (m0)32)

We can still write every permutation σ as a sum of terms of “basis” vectors (with one
1 and the rest zeroes) and permuations σi. However, this can be computed more efficiently
using permutation networks.

Note that if we consider (F2)l ↪→ (F2d)l then mj 7→ (mj)2
k ≡ mj mod 2 so the extra

exponents disappear mod 2.
Finally, consider a polynomial α = a0+a1X+. . .+an−1X

n−1 over Fpn . We are interested
in “projecting” out a coefficient. There is a matrix A such that A(α, σp.α, . . . , σpn−1 .α)T =
(a0, a1, . . . , an−1) which will do the job for us. This process can even be “vectorised” so
over F28 , the map (a0, . . . , an) 7→ (a 254

0 , . . . , a 254
n ) can be computed in only 3 significant

operations.

Further reading. More information on the theory we have covered (and related topics)
seems to be available at http://wstein.org/books/ant/ant/ant.html.
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