Lecture	er: Nigel Smart
Scribe:	David Bernhard

Topics. Introduction to algebraic number theory and Galois theory; the mathematical background of the Gentry-Halevi-Smart and Smart-Vercauteren FHE schemes.

"Picking the right field": In ring-LWE the message space is $\mathbb{F}_2(X)/F(X)$, $R = \mathbb{Z}[X]/F(X)$. Over \mathbb{Q} , F(X) is irreducible but over \mathbb{F}_2 probably not.

Algebraic Number Theory. Let $K = \mathbb{Q}[X]/F(X)$ where F is an irreducible polynomial. Then K is a field, it is called a *number field*. In K, there are many subrings for example $\mathbb{Z}[X]/F(X)$ which we can write as $\mathbb{Z}[\Theta]$ where Θ is a "formal root". Then $K \cong \mathbb{Q}[\Theta]$. There is a subring \mathcal{O}_K satisfying $\mathbb{Z}[\Theta] \subseteq \mathcal{O}_K \subset K$, called the *algebraic integers* and is the largest subring with certain nice properties. (The name comes from the fact that $\mathbb{Z} = \mathcal{O}_{\mathbb{Q}}$.)

Recall that an *ideal* i in a ring R is a set $i \subseteq R$ such that for all $i_1, i_2 \in i$ we also have $i_1 + i_2 \in i$ and for all $i \in i, r \in R$ we have $r.i \in i$. In \mathcal{O}_K we have unique factorisation, that is for all ideals i we have $i = \prod \mathfrak{p}_i^{e_i}$ where the \mathfrak{p}_i are prime ideals and the e_i integers.

Fact. For a prime ideal \mathfrak{p} of \mathcal{O}_K we have $N(\mathfrak{p}) = p^f$ where N is the norm (number of elements in R/\mathfrak{p}), p is a prime number and f an integer. In fact $\mathcal{O}_K/\mathfrak{p} \cong \mathbb{F}_{p^f}$. For example, taking $R = \mathbb{Z}$ and $\mathfrak{i} = (3)$ we have $R/(3) = \mathbb{F}_3$.

Dedekind criterion. If $p \in \mathbb{Z}$ is a "good prime", that is $F(X) \equiv \prod_{i=1}^{l} F_i(X) \mod p$ where the F_i are irreducible, then the ideal $\mathfrak{p} = (p)$ factors as $\mathfrak{p} = \mathfrak{p}_1 \dots \mathfrak{p}_l$ and $R/\mathfrak{p}_i = \mathbb{F}_p[X]/F_i(X)$. (The CRT says that $R/\mathfrak{p} = \prod_{i=1}^{l} R/\mathfrak{p}_i$.) We can write $\mathfrak{p}_i = \{p.r_1 + F_i(X).r_2|r_1,r_2 \in R\}$ and abbreviate this to $\mathfrak{p}_i = (p,F_i)$ which we call the *two-element* representation.

(In the SV and GH FHE schemes, the secret key is some $\gamma \in R$ and the public key a two-element representation of γ .)

Galois groups. If $K = \mathbb{Q}(\Theta) = \mathbb{Q}[X]/F(X)$ and this contains all the deg(F) roots of F(X) then K is Galois. In this case we have $(p) = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_l^{e_l} \Rightarrow e_1 = e_2 = \dots = e_l$ and $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = \dots = N(\mathfrak{p}_l)$. Furthermore there is a Galois group

$$\mathbf{Gal}(K/\mathbb{Q}) := \{a \in \mathrm{Aut}(K) | a_{\downarrow \mathbb{Q}} = \mathrm{id}_{\mathbb{Q}} \}$$

which is a subset of the permutation group on the roots of F(X).

Example. $F(X) = \Phi_m(X)$, a cyclotomic polynomial. Then K is Galois and $\Phi_m = \prod F_i$, furthermore a p is good if and only if $p \nmid m$.

The roots of Φ_m are $\zeta_m^{a_i} \in (\mathbb{Z}/m\mathbb{Z})^*$. The function $\kappa_{a_i} : x \mapsto x^{a_i}$ permutes these roots and in fact $\operatorname{Gal}(K/\mathbb{Q}) = \{\kappa_{a_i} | a_i \in (\mathbb{Z}/m\mathbb{Z})^*\}.$

Fact. All finite fields of the same size are isomorphic, in fact the only finite fields up to isomorphism are \mathbb{F}_{p^d} where p is prime and d an integer.

Computing in finite fields. We wish to compute in $\mathbb{F}_{p^n} = \mathbb{F}_p[X]/G(X)$ where deg(G) = n. (For example, in AES we have p = 2 and $G(X) = X^8 + X^4 + X^3 + X + 1$.) For $F(X) = \Phi_m(X)$ the plaintext space will be $\mathbb{Z}[\Theta] \mod p$ which is isomorphic to $\prod_{i=1}^l \mathbb{F}_p[X]/F_i(X)$. Fact. If $K = \mathbb{Q}[X]/\Phi_m(X)$ then $\mathcal{O}_K = \mathbb{Z}[\Theta]$.

If $a(\theta) \mod (p, F)$ is mapped under this isomorphism we will up with a vector

 $(a_1(\Theta) \mod (p, F_1(\Theta)), \ldots, a_l(\Theta) \mod (p, F_l(\Theta)))$

If we are careful in the values we pick we get $F = \Phi_m$ of degree d and $\mathbb{Z}[\Theta] \mod p \cong (\mathbb{F}_{p^d})^l$. If n|d then $F_{p^n} \subset F_{p^d}$ so in fact we have $(\mathbb{F}_{p^n})^l \subset (\mathbb{F}_{p^d})^l$ and these maps are efficient so we can work with l-vectors of plaintexts at once.

A global view. Taking $\mathbb{Q}[X]/F(X)$ as a degree *n* Galois extension of \mathbb{Q} , the Galois group is a transitive group of permutations on the roots, i.e. for all $1 \leq i < j < n$ there is a $\sigma \in \mathbf{Gal}$ such that $\sigma . r_i = r_j$ (where r_i, r_j are the *i*-th and *j*-th roots).

A local view. Looking at $\mathbb{F}_p[X]/F_i(X)$ as a degree-*d* extension of \mathbb{F}_p we get $\mathbf{Gal} \cong C_d$, the cyclic group of order *d*. It has as generator the Frobenius map $x \mapsto x^p$.

Combining the views. If $F = \Phi_m$ then $\operatorname{Gal}(K/\mathbb{Q})$ contains the Frobenius map. It will permute the roots in each subclass induced by a F_i but not move them between these subclasses. So what is a map that moves roots from one subclass to another? Exactly dof the maps of form $x \mapsto x^i$ are of the form $x \mapsto x^{p^d}$ as $p^d \equiv 1 \mod m$. So $\operatorname{Gal}(K/\mathbb{Q})$ contains a group generated by p, called the *decomposition at* p and written G_p . Consider the group $H = \operatorname{Gal}/G_p$.

Examples

Example 1 Let m = 11 and p = 23. Then $\Phi_m(X) = (X - r_0) \dots (X - r_9)$ splits into linear factors. This gives us 10 copies of \mathbb{F}_{23} with componentwise addition and multiplication. To move components around we note that $p^d = 22 \equiv 0 \mod m$ and $G_p = (1)$ so $\mathbf{Gal}/G_p = \mathbf{Gal}$. By transitivity there must be a map that takes each component to each other one.

Suppose we have two vectors v and w and want to compute $v_1 + w_9$. We can multiply v with $(1, 0, \ldots, 0)$, apply a permutation to w that brings w_9 into the first component then multiply this with $(1, 0, \ldots, 0)$ too and add the two resulting vectors to get $(v_1+w_9, 0, \ldots, 0)$. We know that we can add and multiply homomorphically (on ciphertexts) so we only need a way to compute the permutation homomorphically.

Example 2 Let m = 31 and p = 2. We find $2^5 \equiv 1 \mod m$ so d = 5. $\Phi_m(X)$ has 6 factors of degree 5 each and **Gal** $\cong \langle 2 \rangle \times \langle 6 \rangle$. Note that **Gal**/ $\langle 2 \rangle = \langle 6 \rangle \subset$ **Gal**. If we pick the F_i such that $F_i(x^{6^i}) \equiv 0 \mod F_1(X)$ then $\sigma_6 : x \mapsto x^6 \mod (m_0, \ldots, m_5) \mapsto (m_5, m_0, \ldots, m_4)$ and from this rotation we can get all others. The inverse of σ_6 which we could call $\sigma_{1/6}$ is $(\sigma_6)^5$ because $(\sigma_6)^6 \equiv 1 \mod m$.

Example 3 Let m = 257 and p = 2. Then $m | (2^{16} - 1)$ and so d = 16. $H = \text{Gal} / \langle 2 \rangle$ has 16 elements and is generated by a coset of 3 as $3^8 \equiv 136 \mod m$ which is not an element of $\langle 2 \rangle$ although $3^{16} \equiv 249 \equiv 2^{12} \mod m$. We can compute that

$$\sigma_3.(m_0,\ldots,m_{15}) = ((m_{15})^{2^{11}},m_0,m_1,\ldots,m_{14})$$

Similarly

$$\sigma_{1/3}.(m_0, m_1, \dots, m_{15}) = (m_1, m_2, \dots, m_{15}, (m_0)^{32})$$

We can still write every permutation σ as a sum of terms of "basis" vectors (with one 1 and the rest zeroes) and permutations σ_i . However, this can be computed more efficiently using permutation networks.

Note that if we consider $(\mathbb{F}_2)^l \hookrightarrow (\mathbb{F}_{2^d})^l$ then $m_j \mapsto (m_j)^{2^k} \equiv m_j \mod 2$ so the extra exponents disappear mod 2.

Finally, consider a polynomial $\alpha = a_0 + a_1 X + \ldots + a_{n-1} X^{n-1}$ over \mathbb{F}_{p^n} . We are interested in "projecting" out a coefficient. There is a matrix A such that $A(\alpha, \sigma_p.\alpha, \ldots, \sigma_{p^{n-1}}.\alpha)^T = (a_0, a_1, \ldots, a_{n-1})$ which will do the job for us. This process can even be "vectorised" so over \mathbb{F}_{2^8} , the map $(a_0, \ldots, a_n) \mapsto (a_0^{254}, \ldots, a_n^{254})$ can be computed in only 3 significant operations.

Further reading. More information on the theory we have covered (and related topics) seems to be available at http://wstein.org/books/ant/ant/ant.html.