FHE-MPC Notes

Lecturer: Nigel Smart Lecture # 3
Scribe: David Bernhard

Topics. Introduction to algebraic number theory and Galois theory; the mathematical
background of the Gentry-Halevi-Smart and Smart-Vercauteren FHE schemes.

“Picking the right field”: In ring-LWE the message space is Fo(X)/F(X), R = Z| X |/ F(X).
Over Q, F(X) is irreducible but over Fg probably not.

Algebraic Number Theory. Let K = Q[X]|/F(X) where F'is an irreducible polynomial.
Then K is a field, it is called a number field. In K, there are many subrings for example
Z[X]/F(X) which we can write as Z[O] where O is a “formal root”. Then K = Q[©]. There
is a subring O satisfying Z[0] C Ok C K, called the algebraic integers and is the largest
subring with certain nice properties. (The name comes from the fact that Z = Oq.)

Recall that an ideal i in a ring R is a set i C R such that for all i1,is € i we also have
i1 +io €1iand for all i € i,7 € R we have r.i € i. In Og we have unique factorisation, that
is for all ideals i we have i = [[ p5* where the p; are prime ideals and the e; integers.

Fact. For a prime ideal p of O we have N(p) = p/ where N is the norm (number of
elements in R/p), p is a prime number and f an integer. In fact Ok /p = F,;. For example,
taking R = 7Z and i = (3) we have R/(3) = F3.

Dedekind criterion. If p € Z is a “good prime”, that is FI(X) = H§:1 F;(X) modp
where the F; are irreducible, then the ideal p = (p) factors as p = p1...p; and R/p; =
F,[X]/F;(X). (The CRT says that R/p = [['_, R/p:.) We can write p; = {p.r1 +
Fi(X).ra|r1,r2 € R} and abbreviate this to p; = (p, F;) which we call the two-element
representation.

(In the SV and GH FHE schemes, the secret key is some v € R and the public key a
two-element representation of +.)

Galois groups. If K = Q(©) = Q[X]/F(X) and this contains all the deg(F') roots of
F(X) then K is Galois. In this case we have (p) = p{'...p;' = e1 =e2 = ... = ¢ and
N(p1) = N(p2) = ... = N(p;). Furthermore there is a Galois group

Gal(K/Q) = {a € Aut(K)|a;q = idg}

which is a subset of the permutation group on the roots of F/(X).

Example. F(X) = ®,,(X), a cyclotomic polynomial. Then K is Galois and ®,, =[] F,
furthermore a p is good if and only if p 1 m.

The roots of ®,, are (% € (Z/mZ)*. The function k4, : * — % permutes these roots
and in fact Gal(K/Q) = {kq,|a; € (Z/mZ)*}.

Fact. All finite fields of the same size are isomorphic, in fact the only finite fields up to
isomorphism are F . where p is prime and d an integer.



Computing in finite fields. We wish to compute in Fj» = F,[X]/G(X) where deg(G) =
n. (For example, in AES we have p =2 and G(X) = X8+ X*+ X34+ X +1.) For F(X) =
®,,(X) the plaintext space will be Z[©] mod p which is isomorphic to []._, Fp[X]/Fi(X).
Fact. If K = Q[X]/®(X) then Ox = Z[O].
If a(#) mod (p, F) is mapped under this isomorphism we wnd up with a vector

(al(@) mod (p, F1(0)), ..., a(©) mod (p,Fl(@)))

If we are careful in the values we pick we get F' = @y, of degree d and Z[©] mod p = (F,a)".
If n|d then Fyn C Fya so in fact we have (Fpn)t C (]de)l and these maps are efficient so we
can work with [-vectors of plaintexts at once.

A global view. Taking Q[X]/F(X) as a degree n Galois extension of Q, the Galois
group is a transitive group of permutations on the roots, i.e. for all 1 < i < j < n there is
a o € Gal such that o.r; = r; (where r;,r; are the i-th and j-th roots).

A local view. Looking at IF,,[X]/F;(X) as a degree-d extension of F, we get Gal = Cy,
the cyclic group of order d. It has as generator the Frobenius map = — zP.

Combining the views. If F = ®,, then Gal(K/Q) contains the Frobenius map. It
will permute the roots in each subclass induced by a F; but not move them between these
subclasses. So what is a map that moves roots from one subclass to another? Exactly d
of the maps of form x — ' are of the form z — zP" as p? = 1 mod m. So Gal(K/Q)
contains a group generated by p, called the decomposition at p and written G),. Consider
the group H = Gal/G,.

Examples

Example 1 Let m = 11 and p = 23. Then ®,,(X) = (X —r9)... (X —r9) splits into
linear factors. This gives us 10 copies of Fa3 with componentwise addition and multipli-
cation. To move components around we note that p? = 22 = 0 mod m and G, = (1) so
Gal/G, = Gal. By transitivity there must be a map that takes each component to each
other one.

Suppose we have two vectors v and w and want to compute v; + wg. We can multiply
v with (1,0,...0), apply a permutation to w that brings wg into the first component then
multiply this with (1,0,...,0) too and add the two resulting vectors to get (v;+wg,0,...,0).
We know that we can add and multiply homomorphically (on ciphertexts) so we only need
a way to compute the permutation homomorphically.

Example 2 Let m =31 and p = 2. We find 2° =1 mod m so d = 5. ®,,(X) has 6
factors of degree 5 each and Gal =< 2 > x < 6 >. Note that Gal/ < 2 >=< 6 >C Gal. If
we pick the F; such that Fj(25") =0 mod Fy(X) then og :  — x5 moves (mq,...,ms) —
(ms, mg, ..., my4) and from this rotation we can get all others. The inverse of g which we
could call oy /¢ is (06)° because (06)® =1 mod m.



Example 3 Let m = 257 and p = 2. Then m|(2!°—1) andsod = 16. H = Gal/ < 2 >
has 16 elements and is generated by a coset of 3 as 3% = 136 mod m which is not an element
of < 2 > although 3'6 = 249 = 22 mod m. We can compute that

11
o3.(mo, ..., mi5) = ((m15)* ,mo,m1,...,mis)

Similarly
01/3.(m0,m1, o.,mas) = (my,ma, ..., mis, (m0)32)

We can still write every permutation o as a sum of terms of “basis” vectors (with one
1 and the rest zeroes) and permuations o;. However, this can be computed more efficiently
using permutation networks.

Note that if we consider (Fa)! — (Faa)! then m; — (mj)2k = m; mod 2 so the extra
exponents disappear mod 2.

Finally, consider a polynomial & = ag+a1 X +...4a,_1 X" ! over Fp». We are interested

in “projecting” out a coefficient. There is a matrix A such that A(a, 0p.q, ... 7Upn71.Oé)T =
(ag,ai,...,an—1) which will do the job for us. This process can even be “vectorised” so
over Fys, the map (ag, . ..,a,) — (ay?**, ..., a,?**) can be computed in only 3 significant

operations.

Further reading. More information on the theory we have covered (and related topics)
seems to be available at http://wstein.org/books/ant/ant/ant.html.



