Lecturer: Nigel Smart
Lecture \# 3
Scribe: David Bernhard

Topics. Introduction to algebraic number theory and Galois theory; the mathematical background of the Gentry-Halevi-Smart and Smart-Vercauteren FHE schemes.
"Picking the right field": In ring-LWE the message space is $\mathbb{F}_{2}(X) / F(X), R=\mathbb{Z}[X] / F(X)$. Over $\mathbb{Q}, F(X)$ is irreducible but over \mathbb{F}_{2} probably not.

Algebraic Number Theory. Let $K=\mathbb{Q}[X] / F(X)$ where F is an irreducible polynomial. Then K is a field, it is called a number field. In K, there are many subrings for example $\mathbb{Z}[X] / F(X)$ which we can write as $\mathbb{Z}[\Theta]$ where Θ is a "formal root". Then $K \cong \mathbb{Q}[\Theta]$. There is a subring \mathcal{O}_{K} satisfying $\mathbb{Z}[\Theta] \subseteq \mathcal{O}_{K} \subset K$, called the algebraic integers and is the largest subring with certain nice properties. (The name comes from the fact that $\mathbb{Z}=\mathcal{O}_{\mathbb{Q}}$.)

Recall that an ideal \mathfrak{i} in a ring R is a set $\mathfrak{i} \subseteq R$ such that for all $i_{1}, i_{2} \in \mathfrak{i}$ we also have $i_{1}+i_{2} \in \mathfrak{i}$ and for all $i \in \mathfrak{i}, r \in R$ we have $r . i \in \mathfrak{i}$. In \mathcal{O}_{K} we have unique factorisation, that is for all ideals \mathfrak{i} we have $\mathfrak{i}=\prod \mathfrak{p}_{i}^{e_{i}}$ where the \mathfrak{p}_{i} are prime ideals and the e_{i} integers.

Fact. For a prime ideal \mathfrak{p} of \mathcal{O}_{K} we have $N(\mathfrak{p})=p^{f}$ where N is the norm (number of elements in $R / \mathfrak{p}), p$ is a prime number and f an integer. In fact $\mathcal{O}_{K} / \mathfrak{p} \cong \mathbb{F}_{p^{f}}$. For example, taking $R=\mathbb{Z}$ and $\mathfrak{i}=(3)$ we have $R /(3)=\mathbb{F}_{3}$.

Dedekind criterion. If $p \in \mathbb{Z}$ is a "good prime", that is $F(X) \equiv \prod_{i=1}^{l} F_{i}(X) \bmod p$ where the F_{i} are irreducible, then the ideal $\mathfrak{p}=(p)$ factors as $\mathfrak{p}=\mathfrak{p}_{1} \ldots \mathfrak{p}_{l}$ and $R / \mathfrak{p}_{i}=$ $\mathbb{F}_{p}[X] / F_{i}(X)$. (The CRT says that $R / \mathfrak{p}=\prod_{i=1}^{l} R / \mathfrak{p}_{i}$.) We can write $\mathfrak{p}_{i}=\left\{p . r_{1}+\right.$ $\left.F_{i}(X) \cdot r_{2} \mid r_{1}, r_{2} \in R\right\}$ and abbreviate this to $\mathfrak{p}_{i}=\left(p, F_{i}\right)$ which we call the two-element representation.
(In the SV and GH FHE schemes, the secret key is some $\gamma \in R$ and the public key a two-element representation of γ.)

Galois groups. If $K=\mathbb{Q}(\Theta)=\mathbb{Q}[X] / F(X)$ and this contains all the $\operatorname{deg}(F)$ roots of $F(X)$ then K is Galois. In this case we have $(p)=\mathfrak{p}_{1}^{e_{1}} \ldots \mathfrak{p}_{l}^{e_{l}} \Rightarrow e_{1}=e_{2}=\ldots=e_{l}$ and $N\left(\mathfrak{p}_{1}\right)=N\left(\mathfrak{p}_{2}\right)=\ldots=N\left(\mathfrak{p}_{l}\right)$. Furthermore there is a Galois group

$$
\operatorname{Gal}(K / \mathbb{Q}):=\left\{a \in \operatorname{Aut}(K) \mid a_{\downarrow \mathbb{Q}}=\operatorname{id}_{\mathbb{Q}}\right\}
$$

which is a subset of the permutation group on the roots of $F(X)$.
Example. $F(X)=\Phi_{m}(X)$, a cyclotomic polynomial. Then K is Galois and $\Phi_{m}=\prod F_{i}$, furthermore a p is good if and only if $p \nmid m$.

The roots of Φ_{m} are $\zeta_{m}^{a_{i}} \in(\mathbb{Z} / m \mathbb{Z})^{*}$. The function $\kappa_{a_{i}}: x \mapsto x^{a_{i}}$ permutes these roots and in fact $\operatorname{Gal}(K / \mathbb{Q})=\left\{\kappa_{a_{i}} \mid a_{i} \in(\mathbb{Z} / m \mathbb{Z})^{*}\right\}$.

Fact. All finite fields of the same size are isomorphic, in fact the only finite fields up to isomorphism are $\mathbb{F}_{p^{d}}$ where p is prime and d an integer.

Computing in finite fields. We wish to compute in $\mathbb{F}_{p^{n}}=\mathbb{F}_{p}[X] / G(X)$ where $\operatorname{deg}(G)=$ n. (For example, in AES we have $p=2$ and $G(X)=X^{8}+X^{4}+X^{3}+X+1$.) For $F(X)=$ $\Phi_{m}(X)$ the plaintext space will be $\mathbb{Z}[\Theta] \bmod p$ which is isomorphic to $\prod_{i=1}^{l} \mathbb{F}_{p}[X] / F_{i}(X)$. Fact. If $K=\mathbb{Q}[X] / \Phi_{m}(X)$ then $\mathcal{O}_{K}=\mathbb{Z}[\Theta]$.
If $a(\theta) \bmod (p, F)$ is mapped under this isomorphism we wnd up with a vector

$$
\left(a_{1}(\Theta) \quad \bmod \left(p, F_{1}(\Theta)\right), \quad \ldots, \quad a_{l}(\Theta) \quad \bmod \left(p, F_{l}(\Theta)\right)\right)
$$

If we are careful in the values we pick we get $F=\Phi_{m}$ of degree d and $\mathbb{Z}[\Theta] \bmod p \cong\left(\mathbb{F}_{p^{d}}\right)^{l}$. If $n \mid d$ then $F_{p^{n}} \subset F_{p^{d}}$ so in fact we have $\left(\mathbb{F}_{p^{n}}\right)^{l} \subset\left(\mathbb{F}_{p^{d}}\right)^{l}$ and these maps are efficient so we can work with l-vectors of plaintexts at once.

A global view. Taking $\mathbb{Q}[X] / F(X)$ as a degree n Galois extension of \mathbb{Q}, the Galois group is a transitive group of permutations on the roots, i.e. for all $1 \leq i<j<n$ there is a $\sigma \in \mathbf{G a l}$ such that $\sigma \cdot r_{i}=r_{j}$ (where r_{i}, r_{j} are the i-th and j-th roots).

A local view. Looking at $\mathbb{F}_{p}[X] / F_{i}(X)$ as a degree- d extension of \mathbb{F}_{p} we get $\mathbf{G a l} \cong C_{d}$, the cyclic group of order d. It has as generator the Frobenius map $x \mapsto x^{p}$.

Combining the views. If $F=\Phi_{m}$ then $\operatorname{Gal}(K / \mathbb{Q})$ contains the Frobenius map. It will permute the roots in each subclass induced by a F_{i} but not move them between these subclasses. So what is a map that moves roots from one subclass to another? Exactly d of the maps of form $x \mapsto x^{i}$ are of the form $x \mapsto x^{p^{d}}$ as $p^{d} \equiv 1 \bmod m$. So $\operatorname{Gal}(K / \mathbb{Q})$ contains a group generated by p, called the decomposition at p and written G_{p}. Consider the group $H=\mathbf{G a l} / G_{p}$.

Examples

Example 1 Let $m=11$ and $p=23$. Then $\Phi_{m}(X)=\left(X-r_{0}\right) \ldots\left(X-r_{9}\right)$ splits into linear factors. This gives us 10 copies of \mathbb{F}_{23} with componentwise addition and multiplication. To move components around we note that $p^{d}=22 \equiv 0 \bmod m$ and $G_{p}=(1)$ so $\mathbf{G a l} / G_{p}=\mathbf{G a l}$. By transitivity there must be a map that takes each component to each other one.

Suppose we have two vectors v and w and want to compute $v_{1}+w_{9}$. We can multiply v with $(1,0, \ldots 0)$, apply a permutation to w that brings w_{9} into the first component then multiply this with $(1,0, \ldots, 0)$ too and add the two resulting vectors to get $\left(v_{1}+w_{9}, 0, \ldots, 0\right)$. We know that we can add and multiply homomorphically (on ciphertexts) so we only need a way to compute the permutation homomorphically.

Example 2 Let $m=31$ and $p=2$. We find $2^{5} \equiv 1 \bmod m$ so $d=5$. $\Phi_{m}(X)$ has 6 factors of degree 5 each and $\mathbf{G a l} \cong<2>\times<6>$. Note that $\mathbf{G a l} /<2>=<6>\subset$ Gal. If we pick the F_{i} such that $F_{i}\left(x^{6^{i}}\right) \equiv 0 \bmod F_{1}(X)$ then $\sigma_{6}: x \mapsto x^{6} \operatorname{moves}\left(m_{0}, \ldots, m_{5}\right) \mapsto$ $\left(m_{5}, m_{0}, \ldots, m_{4}\right)$ and from this rotation we can get all others. The inverse of σ_{6} which we could call $\sigma_{1 / 6}$ is $\left(\sigma_{6}\right)^{5}$ because $\left(\sigma_{6}\right)^{6} \equiv 1 \bmod m$.

Example 3 Let $m=257$ and $p=2$. Then $m \mid\left(2^{16}-1\right)$ and so $d=16 . H=\mathbf{G a l} /<2>$ has 16 elements and is generated by a coset of 3 as $3^{8} \equiv 136 \bmod m$ which is not an element of $<2>$ although $3^{16} \equiv 249 \equiv 2^{12} \bmod m$. We can compute that

$$
\sigma_{3} \cdot\left(m_{0}, \ldots, m_{15}\right)=\left(\left(m_{15}\right)^{2^{11}}, m_{0}, m_{1}, \ldots, m_{14}\right)
$$

Similarly

$$
\sigma_{1 / 3} \cdot\left(m_{0}, m_{1}, \ldots, m_{15}\right)=\left(m_{1}, m_{2}, \ldots, m_{15},\left(m_{0}\right)^{32}\right)
$$

We can still write every permutation σ as a sum of terms of "basis" vectors (with one 1 and the rest zeroes) and permuations σ_{i}. However, this can be computed more efficiently using permutation networks.

Note that if we consider $\left(\mathbb{F}_{2}\right)^{l} \hookrightarrow\left(\mathbb{F}_{2^{d}}\right)^{l}$ then $m_{j} \mapsto\left(m_{j}\right)^{2^{k}} \equiv m_{j} \bmod 2$ so the extra exponents disappear $\bmod 2$.

Finally, consider a polynomial $\alpha=a_{0}+a_{1} X+\ldots+a_{n-1} X^{n-1}$ over $\mathbb{F}_{p^{n}}$. We are interested in "projecting" out a coefficient. There is a matrix A such that $A\left(\alpha, \sigma_{p} . \alpha, \ldots, \sigma_{p^{n-1}} . \alpha\right)^{T}=$ $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ which will do the job for us. This process can even be "vectorised" so over $\mathbb{F}_{2^{8}}$, the map $\left(a_{0}, \ldots, a_{n}\right) \mapsto\left(a_{0}{ }^{254}, \ldots, a_{n}{ }^{254}\right)$ can be computed in only 3 significant operations.

Further reading. More information on the theory we have covered (and related topics) seems to be available at http://wstein.org/books/ant/ant/ant.html.

