
FHE-MPC Notes

Lecturer: Nigel Smart Lecture # 5
Scribe: Jake Loftus

1 Modular reduction

For an integer t we let [t]q denote the reduction t (mod q) into the interval [−q/2, q/2).
This can be computed as t−q · bt/qe (e.g 15 (mod 7) = 1 = 15−7 · b15/7e and 8 (mod 5) =
8−5 · b8/5e = −2). Suppose q is an odd modulus and t is an integer. Then we can compute
[t]q (mod 2) as

[t]q = t − q · bt/qe (mod 2)
= t − bt/qe (mod 2)

Now express t/q in binary expansion i.e t/q = Σ∞i=−∞ei · 2i where all but finitely many
of the ei are zero. If we round this and take the result (mod 2) then in fact the result is
simply the xor of the bits either side of the decimal point i.e [t]q (mod 2) = e0 ⊕ e−1. This
can easily be seen by writing out a few examples.

Suppose now we wish to compute the sum of l integers [Σti]q (mod 2). First compute
a big table of binary expansions as

t1/q . . . 11.01001 . . .
t2/q . . . 01.10011 . . .
...

...
tl/q . . . 10.11010 . . .

Then because of carries we can’t just xor things and add. We actually need to retain
the approximately first log2(l) bits. This addition and rounding is essentially the non-linear
part of the bootstrapping operation.

2 Bootstrapping

The key idea behind bootstrapping is to evaluate the decryption circuit homomorphically
resulting in a clean encryption of the original message. In the original SV/GH schemes
[3], [2] this was achieved by augmenting the public key with some additional information,
namely integers {xi}i=S

i=0 such that s of those integers add up to the secret key w for the initial
somewhat homomorphic encryption scheme with s << S. The secret key {σi}i=S

i=0 is now
the characteristic vector of that sparse subset. We also include encryptions ci = Enc(σi, pk)
of the new secret key bits in the public key. Note w = ΣS

0 σi · xi (mod d).
Bootstrapping then procedes in the following stages:

• Write down a matrix of s by p = dlog2(s+1)e bits {bi,j} which correspond to the first
p bits in the binary expansion of cxi/d (similar to above, now as a matrix.

• Encrypt each of these bits to obtain clean (ie with small noise) ciphertexts ci,j .



• Multiply each row of this matrix by the corresponding encryption ci of the secret key
bits to obtain a matrix {ci · ci,j (mod d)}.

• Now we need to compute the encryption of the sum of the plaintext bits σi · bi,j in
each of the columns separately.

– Labeling in reverse corresponding to lower bits (as above), for column −j we
compute the carry bit to be sent to column −j+t as the elemmentary symmetric
polynomial (mod 2) of degree 2t in the bits of column −j. This is just the t′th
bit of the hamming weight of that column.

– Form a suitable matrix and use carry-save-adders (see ([4])) in [3] or ”grade-
school” addition in [2] to reduce it to a matrix with two rows.

• In the final stage we need to xor the two remaining encrypted bits to obtain the clean
encryption of the original message.

This performs the function required even if it does seem a little cumbersome. In par-
ticular bootstrapping is possible if we can evaluate elementary symmetric polynomial up to
a certain degree in in [3] and Gentry’s original scheme or if we can use the ”school-book”
addition method as found in [2].

Recall in [1] for the RLWE variant, ciphertexts are vectors of elements of a ring Rq =
Zq[x]/(f). After key switching a ciphertext will be of the form (c0, c1) and decryption can
be computed as [c0 − s · c1]q (mod 2). Let s = ΣsiX

i, c0 = ΣuiX
i and c1 = ΣviX

i. Then
the i′th coefficient of co − s · c1 is given as Σsj ·wj + w−1 where w−1 is the additional term
appearing due to reduction by the field polynomial. In this case we then represent the bits
of each wj/d in a matrix and apply the same method as above to bootstrap (we assume
the coefficients of the secret key are in {0, 1} for simplicity - other keys can easily be dealt
with). Note in particular the abscense of any sparse subset sum problems.

References

[1] Z. Brakerski, C. Gentry and V. Vaikuntanathan Fully Homomorphic Encryption with-
out Bootstrapping To appear in Innovations in Theoretical Computer Science 2012.

[2] C. Gentry and S. Halevi. Implementing Gentrys Fully-Homomorphic Encryption
Scheme. In EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 129148. Springer, 2011.

[3] N.P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small
key and ciphertext sizes. In Public Key Cryptography – PKC 2010, Springer LNCS
6056, 420–443, 2010

[4] http://en.wikipedia.org/wiki/Carry-save_adder

2


