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Aims. The main purpose of this lecture is to introduce Yao circuits and two-party com-
putation. In order to understand the 2-party protocol of Yao it is necessary to introduce
the notion of oblivious transfer.

Oblivious Transfer. In an oblivious transfer (OT) protocol, sender Alice provides two
inputs, x0 and x1. Recipient Bob inputs a bit b ∈ {0, 1}. Bob then outputs xb but does
not know Alice’s other input, whilst Alice does not ascertain which input Bob has received.
In a two-party computation (2PC) protocol, Alice inputs x and Bob inputs y, and they
each want to learn functions of these two variables, say fA(x, y) and fB(x, y) respectively,
without learning each other’s input.

Yao’s crucial result was that an effective OT protocol implies the existence of a two-
party computation protocol, so now we look at exactly what this is and why it works. In
this setting we describe Boolean circuits, which consist of AND, OR, NAND, NOR, XOR
and NOT gates with Boolean valued wires as inputs and outputs. Each wire comes out of
a unique gate but a wire may fan-out, and thus we can represent the circuit as a collection
of wires W = {w1, ..., wn} and a collection of gates G = {g1, ..., gm}.

Two-Party Computation. Call Alice the circuit creator and Bob the circuit evaluator. If
Bob wants to learn fB(x, y), then Alice creates circuits CF (y) using logic gates and sends the
circuits to Bob. For every wire we create two secret keys. Yao’s garbled circuit construction
[5] is as follows:

• For each wire yi two random cryptographic keys k0
i and k1

i are selected. The first key
represents an encrpytion of 0 and the second represents encryption of 1.

• For each gate we compute a “garbled table” representing the function of the gate on
these encrypted values. An initial table for an AND gate is shown below in Table 1.
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Table 1: Initial garbled circuit table
for AND gate.



• The rows are shuffled, and then Bob picks a permutation π : {0, 1} → {0, 1} and
inserts the new column into the table, then concatenates the “external wire value”
πa with the key and we drop the “internal value”. A developed AND table with an
example permutation is shown in Table 2.
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Table 2: Developed garbled circuit table.

• For each wire wi the oblivious transfer runs as follows:

– Alice inputs two secret keys k0
i , k

1
i , B inputs b ∈ {0, 1},

– B outputs kb
i .

• Finally Alice sends the value of output wire keys k0
2, k1

2 so Bob can confirm his
evaluation the circuits.

The main idea of the protocol is to keep the inputs private, apart from what could be
deduced from the output of the function. Thus for an AND gate, if the output is 1 then
of course both inputs must have been 1, whereas if he learns that the output is 0 he learns
nothing about Alice’s specific inputs.

2PC Schemes. One particular construction of the Yao framework is as follows [2]:

Encs
k1,k2

(m) = m⊕KDF[m](k1, k2, s), (1)

where [m] is the number of bits of the output, s is some string to identify the gate and
output wire, and KDF = H(k1||s)⊕H(k2||s), where this is an AND gate.

Other constructions benefit from the Free XOR Trick, in which we do not need garbled
circuits for XOR gates. In this method, instead of k0

a and k1
a we instead define k1

a = k0
a⊕R,

where R is some fixed randomness that is uniform throughout the gate. Thus the output
keys will commute (with the randomness) and a garbled circuit will not need to be stored.

As is often the case, multiplication (∧) requires more computation than addition (⊕).
This scheme works if both Alice and Bob are honest, so now we look at how this may not
be the case.

Cheating. Bob can cheat in the oblivious transfer step and by returning an invalid g(x, y)⊕
α. Alice can cheat by sending invalid circuit data, OT data or output wires. To counteract
cheating, we could use zero-knowledge proofs at each stage (this is far too time consuming
to be practical), or use the cut-and-choose method [1]. In this framework, Alice generates
s circuits {C1

F , ..., Cs
F }, Bob commits to opening T of them, this process is repeated s times

and s− T circuits are deemed valid.

Progress. A computer system called Fairplay [3] was introduced in 2004, however it only
dealt with honest parties. In 2008 the first implementation of systems involving honest
parties was proposed [2].
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At Asiacrypt 2009 the first computation of Yao circuits was introduced [4], and since
this paper there have been numerous improvements in efficiency of the system. In this
paper, the goal was to analyse a scheme in which Alice inputs a 128-bit AES key k, Bob
inputs a 128-bit message m and Bob outputs a one-round AES encryption of m under k.
The process involved 30k-45k gates, of which around 75% were XOR gates and the rest
required garbled tables. The table below shows the comparative computation times at each
step, for the honest party and malicious party case.

Alice Bob Runtime,
Honest Adv.

Runtime, Malicious
Adv.

Compute CF 1 453
send CF−−−−−→ 1 276

OT←→ 3 35
Compute Result 2 350

7 secs 1114 secs

Table 3: Runtimes for Different Stages of Protocol

Using a process known as inter-weaving (not doing the steps separately) it is possible
to reduce the honest case to considerably less than seven seconds.
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