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In the previous lecture, it was shown how to perform secure multiparty computation
using a multiplicative Linear Secret Sharing Scheme (LSSS). The resulting scheme had two
main drawbacks:

• Perfect security only for semi-honest adversaries.

• Required secure point-to-point communication between all players.

To allow active as opposed to semi-honest adversaries can be dealt with via VSS, but this
is inefficient and still does not avoid the secure point-to-point communication issue.

The requirement for secure channels stems from the algorithm for multiplying x and
y: each player had to compute the local product of shares pi = [x]i[y]i and then securely
distribute the shares of pi to all other players. To allow the use of publicly broadcasted
channels, a new technique for multiplication is required. This was introduced by Beaver in
1992 [1].

Initially, it is required that a secret multiplication triple is shared between all players.
That is, the i-th player has the shares [a]i, [b]i, [c]i, such that upon reconstruction, a · b = c.
Suppose we have already done this initial setup stage, and now want to compute the product
of x and y, where each player has the shares [x]i, [y]i. Firstly, every player computes and
publicly broadcasts the values:

[d]i = [x]i − [a]i
[e]i = [y]i − [b]i.

Since [a]i and [b]i are only initially known to the i-th player, it follows that these values
hide the corresponding shares of x and y. We also have that when reconstructed, d = x− a
and e = y − b. Next, each player reconstructs the values of d and e, and then computes

[z]i = de + d[b]i + e[a]i + [c]i.

This corresponds to a share of

z = de + db + ea + c

= (x − a)(y − b) + (x − a)b + (y − b)a + ab

= xy

and so we have successfully shared the product of x and y.

Active adversaries

To achieve security against active adversaries, some kind of error correction is needed.
We need to be able to correct any errors introduced by the adversary in the broadcast
of the shares of e and d. In the case of information theoretic security this means that the



underlying LSSS must support a Q3 adversary structure, or equivalently can be extended to
a scheme which is strongly multiplicative. By a result of Cramer et al. [2], these properties
are essentially the same as the LSSS being derived from an error correcting code. In the
case of threshold adversaries this equates to the treshold satisfying t < n/3.

For the case of dishonest majority and computational adversaries a different technique is
needed. We could use MACs to provide authentication of the communications. Essentially,
every piece of transmitted data is augmented with a MAC to ensure that nobody can cheat.

Sharing a multiplication triple

Using a threshold LSSS

To generate a shared multiplication triple we can use pseudo-random secret sharing (PRSS),
as introduced in the previous lecture. When using a Shamir secret sharing based scheme,
the steps for each player to carry out are as follows:

• Using PRSS, generate shares [a]i, [b]i, [r]i, of pseudo-random numbers [a], [b] and [r],
which are represented by degree t polynomials.

• Use pseudo-random zero sharing (PRZS) to generate shares [zi] of 0, represented by
a degree 2t polynomial z.

• Compute [s]i = [a]i[b]i − [r]i + [z]i, giving a degree 2t share of ab − r.

• Broadcast [s]i, so every player knows s = ab − r.

• Compute the share [c]i = [s] + [r]i, giving a share of the product [a] · [b].

Note that, whilst the zero shares [z]i are not required for correctness, they are necessary
to properly mask s. Although the random polynomial r provides some masking, it is only
of degree t and so does not fully hide the degree 2t polynomial.

In the case of semi-honest adversaries the above protocol will be correct. For the case
of active adversaries in the information theoretic model we simply require that the honest
players can detect when an error occurs (since then we just abort the offline phase and can
start again). Since the broadcast of [s]i is of a 2t sharing we will be able to detect errors as
long as the number of honest players is larger than 2t; i.e. we require n < t/3.

Using somewhat homomorphic encryption

We want to be able to perform multiparty computation when faced with a dishonest majority
of adversaries. Moreover, we want these adversaries to be active. We need to be able
to produce the triples, and the associated MACs mentioned above. To overcome these
obstacles, we make use of a somewhat homomorphic encryption scheme to compute the
multiplication triples. This avoids the dependency on a strongly multiplicative LSSS, thus
allowing security against a dishonest majority (at the expensive of assuming a computational
assumption). The steps for computing a multiplication triple using SHE are as follows (see
[3]).

• Generate random shares [a]i and [b]i as before (for dishonest majority this is trivial).
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• Broadcast the encryptions under the SHE scheme of these shares, given by Enc([a]i),
Enc([b]i).

• Each player homomorphically computes Enc(a) =
∑

i Enc([a]i), Enc(b) =
∑

i Enc([b]i)
and Enc(c) = Enc(a) · Enc(b).

• Perform a threshold decryption of Enc(c), so each player ends up with a share [c]i of
the product a · b.

How to add MACs to the above computation is explained in [3].
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