
FHE-MPC Notes

Lecturer: Marcel Keller Lecture # 9
Scribe: Enrique Larraia 5th December 2011

In this Lecture we aim to show how to compute AES operations using multiparty com-
putation.

AES Protocol

AES is a block cipher encryption which operates on the field F28 . The elements are repre-
sented modulus the polynomial G(X) = X8+X4+X3+X+1, which is irreducible mod 2.
That is, we will work with polynomials a =

∑7
i=0 aiX

i ∈ F2[X]/G ' F28 . Each element
is identified with the byte which corresponds to its coefficient vector a = (a0, . . . , a7). The
plaintext is given by a 4× 4-byte matrix.

AES performs several rounds and within each executes the operations:

SubBytes . An S-Box operation is supplied to every byte of the matrix state. This works
as follows: let the affine linear transformation fA,c : F28 → F28 : x 7→ Ax + c, where
A is a 8 × 8-matrix with entries in F2, and c ∈ F28 (seen as a 8-length vector with
entries in F2), the S-box is then:

S-box(a) =

{
fA,c(a−1) (if)a 6= 0,

fA,c(a) if a = 0.

ShiftRows . Shift row ri of the state matrix by a shift of i, for i = 0, 1, 2, 3.

MixColumns . The state matrix is multiplied by a fixed, public matrix M with entries
in F28 (byte entries).

AddRoundKey . Add to the state matrix the round-key matrix.

MPC Setting

We want to compute AES operations sharing inputs among n players. W assume we are
using a (linear) shamir secret sharing, so that addition of shares and additions and multipli-
cations by constants can be done locally. Multiplicative operations on shares are achieved
by combining the above elementary operations and opening values. We will also need to
share random values r =

∑
riX

i ∈ F2[X]/G, but instead of sharing r as an element of
the field, we want to share the bits ri. This is done as follows: every player Pi holds a
secret key ai, which determine certain pseudorandom function fai outputting bits. The
shared random bit is simply ri =

∑n
j=1 faj (a), where a is a public value in F28 . Note that

ri ∈ {0, 1} because F28 has characteristic 2.

Sharing Bit Decompositions

Given a shared value [a] = [
∑

aiX
i] sometime AES operates on bytes bitwise, so we need

to share the bits of ai: generate random shared bits [ri] as explained before. Then locally



each player computes the random element r whose bit decomposition is
∑

riX
i, that is,

the players compute [r] =
∑7

i [ri]Xi and now set [c] = [a] + [r] = [a + r]. Then c is opened
to all players and they decompose it into bits. The shared bit decomposition of [a] is

[ai] = ci + [ri] = [c + ri] for each i ∈ {0, . . . , 7},

this works since

7∑
i

aiX
i =

7∑
i

(ci + ri)Xi = c + r = a + r + r = a.

Communication Cost

The operations ShifRows, MixColumns and AddRoundKey come at not cost beacuse they
only involve additions, multiplication by constants (public values) and permutations. These
are operations that can be done locally.

SubBytes Cost

As we have seen the S-Box is divided into two operations: one inversion and one affine
linear transformation. The later again only involve multiplications and additions of con-
stants, so it is done locally. We can now turn to the inversion operation. There are three
methods to compute [a−1] from [a].

Square and multiply. Note that for each a ∈ F∗28 we have a−1 = aord(F∗
28

)−1, so the
players want to compute [a−1] = [a254] (F28 is a field). Since they only know the share of
a, they are not sure whether or not a ∈ F∗28 or in other words, whether or not a 6= 0. This
is not really a problem since [0254] = [0], remember how the S-Box is defined over the byte
0, S-Box(0) = fA,c(0), so even if a = 0, we get the right S-Box value.

To locally compute a254 each player use a variant of the square and multiply algorithm
with multiplication chains. The chains can be chosen to minimize the number of multiplica-
tion or the number of rounds per byte. For example the chain (1, 2, 4, 8, 9, 18, 36, 55, 72, 127, 254)
requires 11 multiplications in 9 rounds, which is optimal regarding the number of multipli-
cations. On the other hand the chain (1, 2, 3, 4, 7, 8, 15, 16, 3132, 63, 54, 127, 254) requires 13
multiplications in 8 rounds, which is optimal on the number of rounds.

Masking. We can also exploit the following property: (ab)−1 = a−1b−1 in F28 . The
idea is mask a with r so it can be opened and therefore its inverse is easily computed (uisng
the extended euclidean algorithm), then use the property to retrieve the inverse of a.

Choose a random [r], opern [ar] so each player locally computes (ar)−1, then (ar)−1[r] =
[a−1r−1r] = [a−1]. The problem here is that we leak whether or not a = 0, since ar = 0 for
each r ∈ F28 if a = 0. To overcome this situation we will find a nonzero value from which
[a−1] can be deduced: the players bit-decompose [a] and get [ai] for i ∈ {0, . . . , 7}, now they
compute the control bit

[b] =
7∏

i=0

(1− [ai]).

2



Note that if a = 0 then ai = 0 for each i, therefore

b =

{
1 if a = 0,

0 otherwise.

This means that a + b 6= 0 for each a ∈ F28 , so the player mask [a + b] with [r] as explained
above. The value [(a + b)r] is opened, if is zero, we must have that r = 0, so we choose a
different r and start again. If r 6= 0 then

((a + b)r)−1[r]− [b] = [(a + b)−1]− [b] =

{
[a−1] if a 6= 0(⇔ b = 0),
[0] if a = 0(⇔ b = 1).

This method requires 7 multiplications for the control bit, one multiplication for ((a +
b)−1)[r] and one opening.

Offline/Online. This method use the property that if K is a field of characteristic p > 0,
then (a + b)pi

= api
+ bpi

, this is intuitively clear since in the newton binomial expansion

all the coefficients (
pi

j
) are a multiple of p (hence 0 in K) except for j = 0 and j = pi.

The idea is mask [a] with some random [r], then open [c] = [a + r] and compute
c2, . . . , c27

. The values [r2], . . . , [r27
] are precomputed in the offline phase, so we can set

c2i
+ [r2i

] = [(a + r)2
i
+ r2i

] = [a2i
+ 2r2i

] = [a2i
],

and hence

[a254] =
7∏
i

[a2i
].

The drawback is that the offline phase is not very efficient.

A full explanation of these techniques can be found in the paper Secure Multiparty AES of
Ivan Damgard and Marcel Keller (eprint 2009/614).

3


