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What Questions Will We Answer In These Lectures?

How can we compute without revealing data?

What is Multi-Party Computation?

What is Fully Homomorphic Encryption?

What is Yao’s Garbled Circuit method for two parties?

What are Linear Secret Sharing Schemes and how are they used?
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Multi-Party Computation

Suppose I have n parties P = {P1, . . . ,Pn}

Each party has some input xi

They want to compute a function

F (x1, . . . , xn)

without revealing the input values
I Bar what can be learned from the output.

We let A ⊂ P denote the set of bad people
I We do not know what this set is
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Examples

Danish Sugar Beet Auction: Partisia

Sharemind Database: Cybernetica

Jana Database: Galois/KU Leuven

vHSM: Unbound Tech

KMaaS: Sepior
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Multi-Party Computation

We can have various properties:

Correctness: If the parties in A do not deviate from the protocol then
the parties get the correct output.

Passive Security: If the parties in A do not deviate from the protocol
then they can learn nothing about the parties input.

Robust Active Security: If the parties in A deviate from the protocol
then the honest parties will always still determine the correct output.

Active Security with Abort: If the parties in A deviate from the
protocol then the honest parties will abort the computation.
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Multi-Party Computation
The set of all possible sets A is called the Adversary structure A.

If for all A ∈ A we have |A| ≤ t then we are said to have a threshold
structure.

I We will only look at threshold adversaries in this talk.
I We will also assume synchronous networks

There are other properties one could have:

Static Security: The set A is determined at the start of the protocol.

Adaptive Security: The set A is determined by the adversary during
the protocol.

Adaptive security is hard to obtain, so mainly protocols focus on
static security.
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Multi-Party Computation

Information Theoretically Secure MPC:
I Passive security can be achieved if and only if t < n/2
I Robust active security can be achieved if and only if t < n/3

(Byzantine generals)
I Active security with abort can be achieved if and only if t < n/2

Computationally Secure MPC:
I Passive security can be achieved if t < n
I Robust active security can be achieved if and only if t < n/2
I Active security with abort can be achieved if t < n
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Fully Homomorphic Encryption

Consider a public key encryption scheme defined by three
algorithms (KeyGen,Enc,Dec) with message space a finite field Fp

Dec(Enc(m,pk; r), sk) = m.

Now suppose we have two additional algorithms which satisfy

Dec(Add(Enc(m1,pk; r1),Enc(m2,pk; r2)), sk) = m1 + m2,

Dec(Mult(Enc(m1,pk; r1),Enc(m2,pk; r2)), sk) = m1 ·m2

Then we are said to have a Fully Homomorphic Encryption scheme.

Note, an FHE scheme cannot be IND-CCA (it is homomorphic), at
most can hope for IND-CPA
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Fully Homomorphic Encryption

Text-book RSA is an OW-CPA secure multiplicatively homomorphic
scheme

Text-book Paillier is an IND-CPA secure additively homomorphic
scheme

The trick is to come up with a scheme which is both additively and
multiplicatively homomorphic.

Once we have addition and multiplication we can evaluate any
function

I Since + and × are universal over Fp.
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Fully Homomorphic Encryption

We can define a procedure Eval which takes
I Any function f (x1, . . . , xn)

I A set of ciphertexts ct1, . . . , ctn encrypting m1, . . . ,mn

and satisfies

Dec(Eval(f , {ct1, . . . , ctn}), sk) = f (m1, . . . ,mn).

We can then out-source any computation to a server.
I Server gets the ciphertexts.
I Server evaluates the function.
I Server returns the encrypted result to the user for decryption.
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Somewhat Homomorphic Encryption

In practice SHE schemes are easier to construct

These are schemes for which the function Eval has restrictions
I It cannot be applied recursively
I The input function f comes from a set of admissable functions
A.

In practice we take A to be the set of functions with
low-multiplicative depth

I This measure of complexity of a function comes up again and
again in this area.
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SHE+FHE

If the set A is big enough then we can transform an SHE scheme
into an FHE one.

Suppose A contains all functions of the form

fct1,ct2(sk) = Dec(ct1, sk) + Dec(ct2, sk),

gct1,ct2(sk) = Dec(ct1, sk) · Dec(ct2, sk).

for any valid ciphertexts ct1 and ct2.
Suppose we also obtain an encryption of the secret key

ctsk = Enc(sk,pk; r)
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SHE+FHE

Then given fresh ciphertexts (newly encrypted) ct1 and ct2 encryting
m1 and m2 we can compute

cta = Eval(fct1,ct2 , ctsk),

ctm = Eval(gct1,ct2 , ctsk)

I cta will be an encryption of m1 + m2.
I ctm will be an encryption of m1 ·m2.

We can apply this trick recursively
I Only ever apply Eval to encryptions of the secret key
I The output ciphertexts define different functions from A.

Thus if A is big enough we have an FHE scheme.
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FHE+MPC

Now suppose we have an ability to perform a distributed decryption
in our FHE scheme

For n parties we split sk into n keys and have a new decryption
algorithm which runs in two steps

I pmi = PartialDec(ct, ski).
I m = Combine(pm1, . . . ,pmn).

such that m is the same value as executing Dec(ct, sk).

N.P. Smart
Computing on Encrypted Data Slide 15



FHE+MPC

We can then define a passive computationally secure two round
MPC protocol...

I Party Pi encrypts its input cti = Enc(mi ,pk; ri).
I The parties exchange the ciphertexts cti .
I All parties compute ct = Eval(f , {ct1, . . . , ctn}).
I Party Pi computes pmi = PartialDec(ct, ski).
I The parties exchange the partial decryptions pmi .
I The parties compute f (m1, . . . ,mn) = Combine(pm1, . . . ,pmn).

This would be a very slow protocol as existing FHE schemes are
very slow indeed.
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Summary of What’s Coming Up

The FHE based approach to MPC gives us low round complexity,
but

I It is very slow
I It is only passively secure

We would like a more efficient solution

We will look at two approaches to MPC
I Yao’s Garbled Circuit approach
I Linear Secret Sharing Schemes based approach

The first is best suited to two parties, whereas the second works for
any number of parties.
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Yao’s Garbled Circuits

We first consider the case of two party passively secure computation

We assume two parties who want to compute a function
y = f (x1, x2)

I Party P1 holds x1

I Party P2 holds x2

Both parties want to learn y

Party P1 does not want P2 to learn x1, and vice versa.

The oldest and simplest way of achieving this is via Yao’s Garbled
Circuits

I Which are surprisingly fast these days
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Garbled Circuits: Simple Version
We take the function f are write it as a boolean circuit

AND
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HHH c
Our aim is to “encrypt” each gate.
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Wire Values

Each wire wi in the circuit can have two values on it 0 or 1

We assign two (symmetric) keys k0
i and k1

i to each wire value on
each wire.

Every gate G can be represented by a function with two input wires
and one output wire

wk = G(wi ,wj)

Note: “NOT” gates can be “folded” into the following output gate.
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AND Gate Encryption

We go through an example of how to encrypt an AND gate

wi wj wk
0 0 0
0 1 0
1 0 0
1 1 1
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AND Gate Encryption

When someone evaluates the gate we want them to learn the wire
key

wi wj wk m
0 0 0 k0

k
0 1 0 k0

k
1 0 0 k0

k
1 1 1 k1

k
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AND Gate Encryption

Now we encrypt this message with the wire keys associated to wi
and wj .

I We assume an IND-CCA two key symmetric encryption
function Ek ,k ′(m).

wi wj wk c
0 0 0 Ek0

i ,k
0
j
(k0

k )

0 1 0 Ek0
i ,k

1
j
(k0

k )

1 0 0 Ek1
i ,k

0
j
(k0

k )

1 1 1 Ek1
i ,k

1
j
(k1

k )
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AND Gate Encryption

We now create a random permutation of the table

wi wj wk c
1 1 1 Ek1

i ,k
1
j
(k1

k )

0 1 0 Ek0
i ,k

1
j
(k0

k )

0 0 0 Ek0
i ,k

0
j
(k0

k )

1 0 0 Ek1
i ,k

0
j
(k0

k )
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AND Gate Encryption

We then just keep the ciphertext columns
I This table is called a Garbled Gate.

c
Ek1

i ,k
1
j
(k1

k )

Ek0
i ,k

1
j
(k0

k )

Ek0
i ,k

0
j
(k0

k )

Ek1
i ,k

0
j
(k0

k )

So each gate in the circuit has four ciphertexts associated to it.
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Gate Evaluation

Gate evaluation occurs as follows:

Suppose the player learns the wire label value for the zero value on
wire i and the one value on wire j .

I They learn k0
i and k1

j .
I Note they do not know wire i is zero and wire j is one.

Using these values they can decrypt only one row of the table
I They try all rows, but only one actually decrypts
I This is why we needed an IND-CCA scheme, as it rejects

invalid ciphertexts.
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Gate Evaluation

c
Ek1

i ,k
1
j
(k1

k )

Ek0
i ,k

1
j
(k0

k )

Ek0
i ,k

0
j
(k0

k )

Ek1
i ,k

0
j
(k0

k )

We can only decrypt the second row.

Hence, we learn k0
k , but we have no idea it corresponds to the zero

value on the output wire.
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Garbled Circuit
Given a function

y = F (x)

expressed as a boolean circuit for F the entire garbled circuit is the
following values

I The garbled table for every gate in F .
I The “wire label table” for every possible input bit
I The “wire label table” for every possible output bit

Suppose the input wires are wire numbers 0, . . . , t .

The input wire label table is then the values

(i , k0
i , k

1
i ).

Same for the output wire label table.
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Garbled Circuits: Complex Version

The above construction was very wasteful in resources:

Needed an IND-CCA symmetric encryption scheme

Evaluator had to decrypt four ciphertexts, when he was only
interested in one.

Would like something simpler, and faster...
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Wire Values
As before each wire wi in the circuit can have two values on it 0 or 1

As before we assign two (symmetric) keys k0
i and k1

i to each wire
value on each wire.

But Now: We pick a random bit ρi ∈ {0,1} for each wire.

If when the circuit is evaluated the actual values if vi ∈ {0,1}, then
I ei = ρi ⊕ vi is called the external value
I kvi

i is called the wire key.
Every gate G can be represented by a function with two input wires
and one output wire

wk = G(wi ,wj)

Note: “NOT” gates can be “folded” into the following output gate.
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AND Gate Encryption

We go through an example of how to encrypt an AND gate

wi wj wk
0 0 0
0 1 0
1 0 0
1 1 1
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AND Gate Encryption

We first add in the random values ρi , ρj , ρk ...
I We pick ρi = 1, ρj = 0 and ρk = 1.

wi wj wk ei ej ek
0 0 0 1 0 1
0 1 0 1 1 1
1 0 0 0 0 1
1 1 1 0 1 0

N.P. Smart
Computing on Encrypted Data Slide 32



AND Gate Encryption

When someone evaluates the gate we want them to learn the wire
key and the external value.

I So we encode this as a message to be encrypted

wi wj wk ei ej ek m
0 0 0 1 0 1 k0

k ‖1
0 1 0 1 1 1 k0

k ‖1
1 0 0 0 0 1 k0

k ‖1
1 1 1 0 1 0 k1

k ‖0
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AND Gate Encryption

Now we encrypt this message with the wire keys associated to wi
and wj .

I We assume an IND-CPA two key symmetric encryption function
Ek ,k ′(m).

wi wj wk ei ej ek c
0 0 0 1 0 1 Ek0

i ,k
0
j
(k0

k ‖1)

0 1 0 1 1 1 Ek0
i ,k

1
j
(k0

k ‖1)

1 0 0 0 0 1 Ek1
i ,k

0
j
(k0

k ‖1)

1 1 1 0 1 0 Ek1
i ,k

1
j
(k1

k ‖0)
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AND Gate Encryption

We now re-order the table according to a standard ordering of ei
and ej .

wi wj wk ei ej ek c
1 0 0 0 0 1 Ek1

i ,k
0
j
(k0

k ‖1)

1 1 1 0 1 0 Ek1
i ,k

1
j
(k1

k ‖0)

0 0 0 1 0 1 Ek0
i ,k

0
j
(k0

k ‖1)

0 1 0 1 1 1 Ek0
i ,k

1
j
(k0

k ‖1)
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AND Gate Encryption
We then just keep the ei , ej and ciphertext columns

I This table is called a Garbled Gate.

ei ej c
0 0 Ek1

i ,k
0
j
(k0

k ‖1)

0 1 Ek1
i ,k

1
j
(k1

k ‖0)

1 0 Ek0
i ,k

0
j
(k0

k ‖1)

1 1 Ek0
i ,k

1
j
(k0

k ‖1)

We label the ciphertexts ck
a,b where a = ei , b = ej and k is the

output wire number.

So each gate in the circuit has four ciphertexts associated to it.
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Gate Evaluation

Gate evaluation occurs as follows:

Suppose the player learns the wire label/external value for the zero
value on wire i and the one value on wire j .

I They learn that ei = 1 (as recall ρi = 1)
I They learn that ej = 1 (as recall ρj = 0)
I They learn k0

i and k1
j .

I Note they do not know wire i is zero and wire j is one.

Using these values they can decrypt only one row of the table
I And they know which one it is, since the external values tell

them
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Gate Evaluation

ei ej c
0 0 Ek1

i ,k
0
j
(k0

k ‖1)

0 1 Ek1
i ,k

1
j
(k1

k ‖0)

1 0 Ek0
i ,k

0
j
(k0

k ‖1)

1 1 Ek0
i ,k

1
j
(k0

k ‖1)

Note, only the last row can be decrypted.

The evaluating party knows that wire wk has external value ek = 1
and wire key k0

k .

But they have no idea what these values really represent.
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Garbled Circuit
Given a function

y = F (x)

expressed as a boolean circuit for F the entire garbled circuit is the
following values

I The garbled table for every gate in F .
I The “wire label table” for every possible input bit
I The “wire label table” for every possible output bit

Suppose the input wires are wire numbers 0, . . . , t .

The input wire label table is then the values

(i , k0
i , k

1
i ,e

0
i ,e

1
i )

where eb
i = ρi ⊕ b.

Same for the output wire label table.
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Encryption Scheme
Only question remaining here is what encryption function to use...

Take a block cipher Bk such as AES encrypting 128-bit blocks.

Take k0
i and k1

i to be 127-bit values

We want to encrypt the 128 bit value k0
k ‖ek using two keys ku

i , kv
j .

Use, for a fixed key k ,

Eku
i ,k

v
j

(k0
k ‖ek ) = Bk (ku

i ⊕ kv
j ⊕G)⊕ (ku

i ⊕ kv
j ⊕G)⊕ (k0

k ‖ek ),

= Hk ,G(ku
i ⊕ kv

j )⊕ (k0
k ‖ek ).

where G is some gate identifier
I Keeping k fixed ensures no need to do expensive rekey.
I Gate identifier enables re-use of wires, saving costs.
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Garbled Circuits: Complex Version - II

We want to cut down the size of a Garbled Circuit.

Turns out XOR gates can be done for free...

The constructor fixes a global secret value ∆

I |∆| = |k0
i | = |k1

i |.

We then set, for all wire labels,

k1
i = k0

i ⊕∆.

This allows XOR gates to come for “free”...
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Garbled Circuits: Complex Version - II
If

I a and b are the actual inputs to a XOR gate, with output
c = a⊕ b.

I Input wire numbers i and j , output wire number k
Then the associated data obtained by the evaluator is

(k0
i ⊕ a ·∆)‖a⊕ ρi and (k0

j ⊕ b ·∆)‖b ⊕ ρj

From which the evaluator can compute the new output data as

(k0
i ⊕ a ·∆‖a⊕ ρi)⊕ (k0

j ⊕ b ·∆‖b ⊕ ρj)

= ((k0
i ⊕ k0

j )⊕ (a⊕ b) ·∆‖(a⊕ b)⊕ (ρi ⊕ ρj))

= (k0
k ⊕ c ·∆‖c ⊕ ρk )

where we set k0
k = k0

i ⊕ k0
j and ρk = ρi ⊕ ρj .
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Garbled Circuits: Complex Version - II

We can simplify notation a little bit...

Make kb
i one bit longer, and ∆ one bit longer.

Let the last bit of ∆ be one.

Then
I ρi is the last bit of k0

i .
I ei is the last bit of k0

i ⊕∆ (which the evaluator receives)

This allows us to explain our next optimization more clearly...

N.P. Smart
Computing on Encrypted Data Slide 43



Half-Gate Evaluation of AND
We can now half the size of the AND gates...

Garbler knows for an AND gate
I k0

a , k0
b , ρa, ρb and ∆.

Evaluator knows for an AND gate
I ka

a , kb
b , ea and eb.

We give a gate which only requires two ciphertexts

Recall from earlier Hk ,G(X ) is an encryption under a fixed key k with
a gate label G.

I To simplify notation we will write H(X ) = Hk ,G(X ) with the key
and gate label being implicit.

I We use H(X ) in the following optimization in a different way
than before
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Half-Gate Evaluation of AND: Garbler

Define the output zero wire as...

k0
c = H(k0

a ⊕ ρa ·∆)⊕ H(k0
b ⊕ ρb ·∆)⊕ ρa · ρb ·∆

The garbled AND gate is then the two values

E1 = H(k0
b )⊕ H(k1

b )⊕ ρa ·∆,
E2 = H(k0

a )⊕ H(k1
a )⊕ k0

b .

Recall the garbler knows k0
a , k0

b , ρa, ρb and ∆ and

k1
a = k0

a ⊕∆,

k1
b = k0

b ⊕∆.
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Half-Gate Evaluation of AND: Evaluator
The evaluator now knows ka

a , kb
b , ea, eb, E1 and E2.

They then compute

H(ka
a )⊕ ea · (E2 ⊕ kb

b )⊕ H(kb
b )⊕ eb · E1

When ea = 0 and eb = 0 this is equal to

H(ka
a )⊕ H(kb

b ) = H(k0
a ⊕ a ·∆)⊕ H(k0

b ⊕ b ·∆),

= H(k0
a ⊕ ρa ·∆)⊕ H(k0

b ⊕ ρb ·∆),

= k0
c ⊕ ρa · ρb ·∆,

= k0
c ⊕ a · b ·∆,

since a⊕ ρa = ea = 0 and b ⊕ ρb = eb = 0.

Which is exactly what an AND gate should compute
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Half-Gate Evaluation of AND: Evaluator
As another example take ea = 0 and eb = 1.

H(ka
a )⊕ H(kb

b )⊕ E1

= H(k0
a ⊕ a ·∆)⊕ H(kb

b )⊕ H(k0
b )⊕ H(k1

b )⊕ ρa ·∆,
= H(k0

a ⊕ ρa ·∆)⊕ H(k1⊕b
b )⊕ a ·∆

= H(k0
a ⊕ ρa ·∆)⊕ H(k0 ⊕ (1⊕ b) ·∆)⊕ a ·∆

= H(k0
a ⊕ ρa ·∆)⊕ H(k0 ⊕ ρb ·∆)⊕ a ·∆

= k0
c ⊕ ρa · ρb ·∆⊕ a ·∆

= k0
c ⊕ a · (1⊕ b) ·∆⊕ a ·∆

= k0
c ⊕ a · b ·∆.

since a⊕ ρa = ea = 0 and b ⊕ ρb = eb = 1.

Checking the other two possibilities for ea and eb results in the same
equation
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Oblivious Transfer

Before giving Yao’s MPC protocol we need another cryptographic
tool

OT

Sender

m0, m1
-

Receiver

b�

mb-
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Simple OT Protocol
A simple passively secure OT protocol can be given by

Sender Receiver

C ← E(Fp)
C−→ x ← (Z/qZ)

Qb ← [x ] · P
Q0←− Q1−b ← C −Qb

Q1 ← C −Q0

k ← (Z/qZ)

C1 ← [k ] · P
E0 ← M0 + [k ] ·Q0

E1 ← M1 + [k ] ·Q1
C1,E0,E1−→

Mb ← Eb − [x ] · C1
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Simple OT Protocol

Above protocol is basically two lots of ElGamal encryption
I Sender has choice of two public keys Q0 and Q1 to use.
I Sender does not know which key is “real”
I Receiver does not the private key of the Q1−b public key

Use M0 as the key to one message, and M1 as the key to another.

The actual message can then be sent using symmetric crypto if
needs be.

It is only passively secure.
I But what does secure mean?
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Security of OT

An OT protocol is secure if:

Sender Security: The receiver cannot learn anything about M1−b

I In above protocol this holds due to DDH hardness
I A receiver who breaks this can be turned into an adversary to

solve DDH.

Receiver Security: The sender cannot learn anything about the bit b
I The above protocol is perfectly secure in this respect.
I There is a perfect simulation of the receiver, where there is no

hidden bit b.
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Yao’s Two Party Protocol

So we now have the building blocks for Yao’s two party protocol.

We first assume that the function is of the form

(y1, y2) = F (x1, x2)

where
I x1 (resp. y1) is party one’s input (resp. output)
I x2 (resp. y2) is party two’s input (resp. output)

We now give a passively secure protocol (so having only a passively
secure OT is OK).
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Yao’s Two Party Protocol

Step 1:
Party one (the circuit garbler) creates a garbled circuit for F

(G, (I1, I2), (O1,O2))

where
I G is the set of garbled gates
I I1 is the input wire label table for party one.
I I2 is the input wire label table for party two
I O1 is the output wire label table for party one.
I O2 is the output wire label table for party two.
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Yao’s Two Party Protocol

Step 2:
The circuit garbler sends G to party two.

The circuit garbler also sends the values in I1 corresponding to its
input to the function

I So if the garbler wants to input bit b on wire w then it sends to
party one the value (kb

w ,eb
w ).

I This reveals nothing about the actual input as kb
w is a random

key, and ρw remains hidden.

The circuit garbler also sends the table O2 over to party two.
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Yao’s Two Party Protocol

Step 3:
The players now execute at OT protocol.

I One for each input wire w for player two.

Player two acts as the receiver with input bit the input he wants for
the function.

Player one acts as the sender with the two “messages”

m0 = (k0
w ,e

0
w ) and m1 = (k1

w ,e
1
w ).

So if player two had input bit 0 he would learn (k0
w ,e0

w ) but not
(k1

w ,e1
w ).
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Yao’s Two Party Protocol

Step 4:
The receiver (the circuit evaluator) can now evaluate the garbled
circuit to get the garbled output wire labels.

Using O2 the receiver can now decode his output to the value y2.

The receiver then sends the rest of the output wire labels back to
Player one.

Step 5:
Player one can decode his output value y1 using this data and the
table O1.
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String Comparison

Sometimes we can use OT to do simple function evaluation without
using Garbled Circuits at all

Suppose P1 has a bit string x1, . . . , xn.

Suppose P2 has a bit string y1, . . . , yn.

They want to test if the two strings are equal

We present a protocol that gives P2 this information
I For P1 to get the info just run it in reverse
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String Equality Check

The protocol goes as follows...
I Party P1 generates random 128-bit inputs strings (r0

i , r
1
i ) for

i = 1, . . . ,n.
I The parties run n OT protocols

I Party P1’s input to the i-th OT is (r0
i , r

1
i ).

I Party P2’s input to the i-th OT is yi .
I Party P2 learns r yi

i .
I Party P1 computes X =

⊕n
i=1 r xi

i .
I Party P2 computes Y =

⊕n
i=1 r yi

i .
I Party P1 sends P2 the value X .
I If X = Y then P2 accepts.
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Why is Yao not actively secure?

In basic Yao we have a circuit creator and a circuit evaluator.

The evaluator really cannot cheat at all
I They just get input and then do stuff
I This assumes an actively secure OT protocol is used

I The earlier OT protocol is not actively secure.
I But for our purposes lets just assume this can be fixed.
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Why is Yao not actively secure?

The circuit creator P1 could however create a bogus circuit

Instead of creating a circuit for the function

(y1, y2) = f (x1, x2)

then could create a circuit for the function

(x2, y2) = f (x1, x2)

and hence learn P2’s input.

An obvious solution is to remove this inbalance in the players
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Dual Execution
So now let both parties act as circuit creator and circuit evaluator.

Instead of computing the function

(y1, y2) = f (x1, x2)

we first transform it to the function

(y1 ⊕ r1, y2 ⊕ r2) = g({x1, r1}, {x2, r2})

Note if we computed the function g via Yao’s method then we do not
need P2 to send the garbled outputs back to P1.

I P2 simply obtains output (y1 ⊕ r1, y2 ⊕ r2)

I P2 obtains their output from y2 ⊕ r2 and r2.
I P2 sends P1 the value y1 ⊕ r1
I P1 obtains their output from y1 ⊕ r1 and r1.
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Dual Execution
Now compute g two ways

I P2 acts as evaluator for P1’s circuit
I P1 acts as evaluator for P2’s circuit

Player P2 will obtain y2 ⊕ r2 in two ways
I Once on their own
I Once from P1’s evaluation of P2’s circuit

If they differ then P1’s circuit creation was invalid

In the second evaluation P1 will obtain y1 ⊕ r1 in two ways
I Once on their own
I Once from P2’s evaluation of P1’s circuit

If they differ then P2’s circuit creation was invalid

N.P. Smart
Computing on Encrypted Data Slide 62



Attack 1 on Dual Execution

Suppose P1 is an adversary

Player P1 instead of sending a garbling of the function

(y1 ⊕ r1, y2 ⊕ r2) = g({x1, r1}, {x2, r2})

could send a garbling of the function

(x2 ⊕ r1, y2 ⊕ r2) = g′({x1, r1}, {x2, r2})

From the returned value by P2 the attacker can learn x2
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Dual Execution

To avoid this we do an equality check without sending the values
back

I The two parties execute Yao twice in each direction
I Party P1 obtains A1 = (y1 ⊕ r1, y2 ⊕ r2).
I Party P2 obtains A2 = (y1 ⊕ r1, y2 ⊕ r2).
I The parties run the equality check on A1 and A2.
I If OK P1 outputs y1 and P2 outputs y2.

This uses the string equality testing protocol from earlier
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Attack 2 on Dual Execution

Again we assume P1 is the bad party.

Suppose P1 wants to learn the first bit of x2, call this bit z.

Instead of creating a circuit for the function g above, party P1 now
creates a circuit for

(y1 ⊕ r1 ⊕ (z‖0 . . . 0), y2 ⊕ r2) = g({x1, r1}, {x2, r2})

When we run the equality check
I The equality check passes if z = 0
I The equality check fails if z = 1

This party P1 learns one bit (indeed any bit he chooses) of P2’s input
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Cut-and-Choose

The previous attack was because P1 could send P2 a bogus circuit.

So we stop this by now making each party send each other two
circuits.

So party P2 receives two garbled circuits from P1, G0 and G1.

Party P2 now flips a bit b ∈ {0,1} and asks P1 to reveal the
randomness used to generate G1−b.

I P2 can then check that G1−b is the correct function.
Then P2 evaluates G1 as usual.

This means P1 only has a 50 percent change of providing a fake
circuit.
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Attack 1 on the OT

But still P1 can learn a bit of P2’s input with 100 percent probability.

Now when executing the OT protocol for the un-opened circuit for
P2’s first input wire, party P1 provides the input to the OT of (r0, f 1)

I r0 is the correct input wire value for the bit 0.
I f 1 is a fake input wire value for the bit 1.

If P2’s input bit was zero then the protocol will succeed

If P2’s input bit was one, then the protocol will not succeed
I As the equality test will fail, as P2 will evaluate garbage.
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Fixing the OT
The problem is that each OT input corresponds to a single wire
input.

We now replace the circuit

(y1 ⊕ r1, y2 ⊕ r2) = g({x1, r1}, {x2, r2})

by the circuit

(y1 ⊕ r1, y2 ⊕ r2) = h({z1, r1}, {z2, r2})

where zi ∈ {0,1}s2·|xi | and we define (say)

x1 = (⊕s2
i=1z(i)1 ,⊕s2

i=1z(i+s2)
1 , . . . ,⊕s2

i=1z(i+|x1|−s2)
1 ).

Thus each bit of x1 is a sum of s2 bits in z1

Now if a bit in the OT is provided wrong the protocol will always
abort (with high probability).

N.P. Smart
Computing on Encrypted Data Slide 68



Majority Voting

We want the cheating probability to be smaller than 1/2.

So we produce more circuits, say s1 of them

We open half of them to check all is OK with their construction

But now we have s1/2 circuits to evaluate

To obtain output we take the majority verdict
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Majority Voting

To win this game the adversary has to
I Get all opened circuits to be good.
I Get majority of the evaluated circuits to be bad.

Probability that an adversary gets an invalid circuit passed this
check is about 2−s1/4.

For intuition about this, suppose half are bad and half are good
I A single bad circuit is not opened with probability 1/2
I We need the bad circuits to agree with the majority output
I Thus we need more than s1/4 bad circuits to be not opened.

A more careful analysis gives a better value for s1.
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Why Take Majority?

The problem is
I If you abort, since you know you are being cheated, you leak

information
I The Adv can make the minority wrong circuits be ones which

compute garbage if an input bit is one.
I Thus we need to take the majority as the answer and not abort.
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Attack 2 on the OT

Recall we now take s1 circuits and evaluate them.

Suppose P2’s input size is ` bits then we need to evaluate ` · s2 OT’s.

The attacker could send different inputs in the different executions of
the OT on the same input bit.

To fix this we need to execute the ` · s2 OT’s as only ` OTs.

Each OT transfers the input wire labels for a specific wire for all
circuits in one go.
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Summary

This game of attack-and-fix does actually terminate...

And further optimizations can be provided.

We have just given the flavour of the methodology above.

In the end we can produce two party actively secure computation
using Yao

It is actually both practical and efficient

Can evaluate circuits of many billions of gates quite easily
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Any Questions?
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