Computing on Encrypted Data

N.P. Smart

COSIC,

KU Leuven, ESAT,
Kasteelpark Arenberg 10, bus 2452,
B-3001 Leuven-Heverlee,
Belgium.

August 31, 2018

N.P. Smart ‘ KU LEUVEN
Computing on Encrypted Data Slide 1

Outline
Introduction
Multi-Party Computation
Fully Homomorphic Encryption
Somewhat Homomorphic Encryption
FHE and MPC
Yao’s Garbled Circuit Based 2-PC Method
Garbled Circuits: Simple Version
Garbled Circuits: Complex Version
Oblivious Transfer
Yao’s Passively Secure Protocol
Short Diversion: String Comparison
Making Yao Actively Secure
Dual Execution
Cut-And-Choose
Increasing the number of circuits

N.P. Smart | KU LEUVEN
Computing on Encrypted Data

What Questions Will We Answer In These Lectures?

How can we compute without revealing data?

What is Multi-Party Computation?

What is Fully Homomorphic Encryption?

What is Yao’s Garbled Circuit method for two parties?

What are Linear Secret Sharing Schemes and how are they used?

N.P. Smart | KU LEUVEN
Computing on Encrypted Data

Multi-Party Computation
Suppose | have n parties P = {Ps,..., Pn}
Each party has some input x;

They want to compute a function
F(Xt,...,Xn)

without revealing the input values
» Bar what can be learned from the output.

We let A C P denote the set of bad people
» We do not know what this set is

N.P. Smart | KU LEUVEN
Computing on Encrypted Data

Examples

Danish Sugar Beet Auction: Partisia
Sharemind Database: Cybernetica
Jana Database: Galois/KU Leuven
VHSM: Unbound Tech

KMaaS: Sepior

N.P. Smart ‘ KU LEUVEN
Computing on Encrypted Data

Multi-Party Computation

We can have various properties:

Correctness: If the parties in A do not deviate from the protocol then
the parties get the correct output.

Passive Security: If the parties in A do not deviate from the protocol
then they can learn nothing about the parties input.

Robust Active Security: If the parties in A deviate from the protocol
then the honest parties will always still determine the correct output.

Active Security with Abort: If the parties in A deviate from the
protocol then the honest parties will abort the computation.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data

Multi-Party Computation

The set of all possible sets A is called the Adversary structure A.
If for all A € A we have |A| < t then we are said to have a threshold
structure.
» We will only look at threshold adversaries in this talk.
» We will also assume synchronous networks
There are other properties one could have:

Static Security: The set A is determined at the start of the protocol.

Adaptive Security: The set A is determined by the adversary during
the protocol.

Adaptive security is hard to obtain, so mainly protocols focus on
static security.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data

Multi-Party Computation

Information Theoretically Secure MPC:
» Passive security can be achieved if and only if < n/2

» Robust active security can be achieved if and only if t < n/3
(Byzantine generals)

» Active security with abort can be achieved if and only if t < n/2

Computationally Secure MPC:
» Passive security can be achieved if t < n
» Robust active security can be achieved if and only if t < n/2
» Active security with abort can be achieved if t < n

N.P. Smart | KU LEUVEN
Computing on Encrypted Data

Fully Homomorphic Encryption

Consider a public key encryption scheme defined by three
algorithms (KeyGen, Enc, Dec) with message space a finite field I,

Dec(Enc(m, pk; r),sk) = m.

Now suppose we have two additional algorithms which satisfy

Dec(Add(Enc(my, pk; r1), Enc(m., pk; r2)), sk) = my + mo,
Dec(Mult(Enc(my, pk; ri), Enc(mo, pk; r2)), sk) = my - mo

Then we are said to have a Fully Homomorphic Encryption scheme.

Note, an FHE scheme cannot be IND-CCA (it is homomorphic), at
most can hope for IND-CPA

N.P. Smart | KU LEUVEN
Computing on Encrypted Data

Fully Homomorphic Encryption

Text-book RSA is an OW-CPA secure multiplicatively homomorphic
scheme

Text-book Paillier is an IND-CPA secure additively homomorphic
scheme

The trick is to come up with a scheme which is both additively and
multiplicatively homomorphic.

Once we have addition and multiplication we can evaluate any
function

» Since + and x are universal over [Fp,.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 10

Fully Homomorphic Encryption

We can define a procedure Eval which takes

» Any function f(xy,...,Xp)

» A set of ciphertexts cty, ..., ct, encrypting my, ..., my
and satisfies

Dec(Eval(f,{cty,...,ctp}),sk) = f(myq,..., mp).

We can then out-source any computation to a server.
» Server gets the ciphertexts.
» Server evaluates the function.
» Server returns the encrypted result to the user for decryption.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 11

Somewhat Homomorphic Encryption

In practice SHE schemes are easier to construct

These are schemes for which the function Eval has restrictions
» |t cannot be applied recursively

» The input function f comes from a set of admissable functions
A.

In practice we take A to be the set of functions with
low-multiplicative depth
» This measure of complexity of a function comes up again and
again in this area.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 12

SHE+FHE

If the set A is big enough then we can transform an SHE scheme
into an FHE one.

Suppose A contains all functions of the form

fet, ct,(SK) = Dec(cty, sk) + Dec(cty, sk),
Jet, ct, (SK) = Dec(cty, sk) - Dec(cty, sk).

for any valid ciphertexts cty and ct,.
Suppose we also obtain an encryption of the secret key

ctsk = Enc(sk, pk; r)

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 13

SHE+FHE

Then given fresh ciphertexts (newly encrypted) ct; and ct, encryting
my and m», we can compute

Ctyg = Eval(fct1 Ctos Ctsk),
Ctm = Eval(get, cty Clsk)

» cty will be an encryption of my + mo.

» ctp will be an encryption of my - mo.
We can apply this trick recursively

» Only ever apply Eval to encryptions of the secret key

» The output ciphertexts define different functions from A.
Thus if A is big enough we have an FHE scheme.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 14

FHE+MPC

Now suppose we have an ability to perform a distributed decryption
in our FHE scheme

For n parties we split sk into n keys and have a new decryption
algorithm which runs in two steps

» pm; = PartialDec(ct, sk;).
» m = Combine(pmy,...,pm,).
such that m is the same value as executing Dec(ct, sk).

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 15

FHE+MPC

We can then define a passive computationally secure two round
MPC protocol...
» Party P; encrypts its input ct; = Enc(m;, pk; r;).
The parties exchange the ciphertexts ct;.
All parties compute ct = Eval(f, {ct, ..., ctp}).
Party P; computes pm; = PartialDec(ct, sk;).
The parties exchange the partial decryptions pm;.
The parties compute f(my, ..., my) = Combine(pmy,...,pm,).

v

v

v

v

v

This would be a very slow protocol as existing FHE schemes are
very slow indeed.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 16

Summary of What's Coming Up

The FHE based approach to MPC gives us low round complexity,
but

» Itis very slow
» It is only passively secure
We would like a more efficient solution

We will look at two approaches to MPC
» Yao’s Garbled Circuit approach
» Linear Secret Sharing Schemes based approach

The first is best suited to two parties, whereas the second works for
any number of parties.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 17

Yao’s Garbled Circuits

We first consider the case of two party passively secure computation

We assume two parties who want to compute a function
y = f(x1, %)

» Party P; holds x;

» Party P, holds x»
Both parties want to learn y

Party P; does not want P» to learn xq, and vice versa.

The oldest and simplest way of achieving this is via Yao’s Garbled
Circuits

» Which are surprisingly fast these days

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 18

Garbled Circuits: Simple Version

We take the function f are write it as a boolean circuit

AND NAND

v

NOR

NOT

i
vy

Our aim is to “encrypt” each gate.

N.P. Smart ‘ KU LEUVEN
Computing on Encrypted Data Slide 19

Wire Values

Each wire w; in the circuit can have two values on it 0 or 1

We assign two (symmetric) keys k° and k! to each wire value on
each wire.

Every gate G can be represented by a function with two input wires
and one output wire
Wy = G(Wi7 VV])

Note: “NOT” gates can be “folded” into the following output gate.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 20

AND Gate Encryption

We go through an example of how to encrypt an AND gate

_L_Loo§
—~ oo ol

N.P. Smart
Computing on Encrypted Data

‘ KU LEUVEN

Slide 21

AND Gate Encryption

When someone evaluates the gate we want them to learn the wire
key

wi | w | w || m
000 [[A
01]0 |k
1]0] o0 |K
101]1 |k

N.P. Smart
Computing on Encrypted Data

‘ KU LEUVEN

Slide 22

AND Gate Encryption

Now we encrypt this message with the wire keys associated to w;
and w;.
» We assume an IND-CCA two key symmetric encryption
function Ex x/(m).

_L_Loo§
- o = o=
- o o o=
m
x X X X
=
o
—~~
o

N.P. Smart ‘ KU LEUVEN

Computing on Encrypted Data Slide 23

AND Gate Encryption

We now create a random permutation of the table

- O o ==X

o o o =X
m
=
—~
Lo o

N.P. Smart ‘ KU LEUVEN
Computing on Encrypted Data Slide 24

AND Gate Encryption

We then just keep the ciphertext columns
» This table is called a Garbled Gate.

c
E
k,_1 ’kj1

E

k0 k!
E,

kP ,k]P

—_~ o~~~
2L X X5 XY
~— ~— ~— ~—

E
K KO

So each gate in the circuit has four ciphertexts associated to it.

N.P. Smart ‘ KU LEUVEN
Computing on Encrypted Data Slide 25

Gate Evaluation

Gate evaluation occurs as follows:

Suppose the player learns the wire label value for the zero value on
wire i and the one value on wire j.

> They learn kP and k/'.
» Note they do not know wire i is zero and wire j is one.

Using these values they can decrypt only one row of the table
» They try all rows, but only one actually decrypts

» This is why we needed an IND-CCA scheme, as it rejects
invalid ciphertexts.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 26

Gate Evaluation

c

Ek1 k1(

k° k1(
Ek° ko(
Ek1 kO(

»*5»*5»53@:
~— ~— ~— ~—

We can only decrypt the second row.

Hence, we learn k2, but we have no idea it corresponds to the zero

value on the output wire.

N.P. Smart

Computing on Encrypted Data

Slide 27

‘ KU LEUVEN

Garbled Circuit
Given a function
y=Fx)

expressed as a boolean circuit for F the entire garbled circuit is the
following values

» The garbled table for every gate in F.

» The “wire label table” for every possible input bit

» The “wire label table” for every possible output bit

Suppose the input wires are wire numbers O, ..., f.

The input wire label table is then the values

(i, k7, k)

Same for the output wire label table.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 28

Garbled Circuits: Complex Version

The above construction was very wasteful in resources:
Needed an IND-CCA symmetric encryption scheme

Evaluator had to decrypt four ciphertexts, when he was only
interested in one.

Would like something simpler, and faster...

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 29

Wire Values

As before each wire w; in the circuit can have two values on it 0 or 1

As before we assign two (symmetric) keys k° and k' to each wire
value on each wire.

But Now: We pick a random bit p; € {0, 1} for each wire.

If when the circuit is evaluated the actual values if v; € {0, 1}, then
» ¢ = p; @ v, is called the external value
» k' is called the wire key.

Every gate G can be represented by a function with two input wires
and one output wire

wx = G(w;, wj)

Note: “NOT” gates can be “folded” into the following output gate.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 30

AND Gate Encryption

We go through an example of how to encrypt an AND gate

_L_Loo§
—~ oo ol

N.P. Smart
Computing on Encrypted Data

‘ KU LEUVEN

Slide 31

AND Gate Encryption

We first add in the random values p;, pj, pk-.-
» We pick pj =1, pj =0and px = 1.

_L_I.OO§
-~ oo ol
- o = o

O_L_L_L;D

N.P. Smart ‘ KU LEUVEN

Computing on Encrypted Data Slide 32

AND Gate Encryption

When someone evaluates the gate we want them to learn the wire
key and the external value.

» So we encode this as a message to be encrypted

Wi | Wi | Wk || € | € | €k m

ojo|o 1o 1K
0|10 |1 |1]1|K|
1100 0]0]| 1|k
111]0]1]0]|kl]o

N.P. Smart ‘ KU LEUVEN
Computing on Encrypted Data Slide 33

AND Gate Encryption

Now we encrypt this message with the wire keys associated to w;

and w;.
» We assume an IND-CPA two key symmetric encryption function
Ek7k/(m).
Wi | Wi | We || € | €& | €k C
0O/ 0|0 |1]0]1 Eko ko(k 1)
O 101 |1]1 ko K (k2|11)
110 01(0]0]| 1 k1 ko(k 1)
101]1 o(1]0 Ek1 k1(k 10)

N.P. Smart ‘ KU LEUVEN
Computing on Encrypted Data Slide 34

AND Gate Encryption

We now re-order the table according to a standard ordering of ¢;
and e.

Wi | Wj | Wi |l €| €| ek c

BEARE AR TG
1{1]1]0]1]0 Ek1 k1(k 10)
0|00 |1|0]1|E ko(k 1)
o 1o t]1]1]E k1(k 1)

N.P. Smart ‘ KU LEUVEN

Computing on Encrypted Data Slide 35

AND Gate Encryption
We then just keep the e;, e; and ciphertext columns
» This table is called a Garbled Gate.

€| &

0|0 o(k 1)
0| 1 Ek1 1(k 10)
110] Epe kO(k 1)
111] Ee k1(k 1)

We label the C|phertexts 2.b where a = ¢;, b= e; and k is the
output wire number.

So each gate in the circuit has four ciphertexts associated to it.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 36

Gate Evaluation

Gate evaluation occurs as follows:

Suppose the player learns the wire label/external value for the zero
value on wire / and the one value on wire j.

They learn that e; = 1 (as recall p; = 1)

They learn that ¢; = 1 (as recall p; = 0)

They learn kP and k/'.

Note they do not know wire i is zero and wire j is one.

v

v

v

v

Using these values they can decrypt only one row of the table

» And they know which one it is, since the external values tell
them

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 37

Gate Evaluation

€ | & C

00| Eepolkillh)
0| 1 Ek‘ k1(k 10)
110 Ep kO(k 1)
1|1 ko k1(k 1)

Note, only the last row can be decrypted.

The evaluating party knows that wire wy has external value g, = 1
and wire key k.

But they have no idea what these values really represent.

N.P. Smart ‘ KU LEUVEN
Computing on Encrypted Data Slide 38

Garbled Circuit
Given a function
y=Fx)

expressed as a boolean circuit for F the entire garbled circuit is the
following values

» The garbled table for every gate in F.

» The “wire label table” for every possible input bit

» The “wire label table” for every possible output bit

Suppose the input wires are wire numbers 0, ..., t.

The input wire label table is then the values
(iv kiov ki1) e/(')’ el1)

where e® = p; @ b.

Same for the output wire label table.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 39

Encryption Scheme
Only question remaining here is what encryption function to use...

Take a block cipher By such as AES encrypting 128-bit blocks.
Take k? and k' to be 127-bit values
We want to encrypt the 128 bit value k2| ey using two keys k¥, k.

Use, for a fixed key k,
Eyw s (KRl ex) = Be(K' @ kY @ G) @ (K © kY @ G) & (K| ex).
= Hra(k @ k') @ (K|l ex).

where G is some gate identifier
» Keeping k fixed ensures no need to do expensive rekey.
» Gate identifier enables re-use of wires, saving costs.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 40

Garbled Circuits: Complex Version - I

We want to cut down the size of a Garbled Circuit.
Turns out XOR gates can be done for free...

The constructor fixes a global secret value A
> |A] = [KP] = [K] .

We then set, for all wire labels,

k! =K @ A.

This allows XOR gates to come for “free”...

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 41

Garbled Circuits: Complex Version - I
If

» aand b are the actual inputs to a XOR gate, with output
c=aodhb.

» Input wire numbers i and j, output wire number k
Then the associated data obtained by the evaluator is

(Koa-Alasp and (k@ b-A)be p
From which the evaluator can compute the new output data as

(koa-Ala®p) o (kK ©b-Albe p))
= (K e k)) @ (a@ b)-All(a® b) & (pi & p)))
= (K@ c-Allce py)

where we set k{ = kP @ k? and px = pi © pj.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 42

Garbled Circuits: Complex Version - I

We can simplify notation a little bit...
Make kP one bit longer, and A one bit longer.
Let the last bit of A be one.

Then
> pj is the last bit of k°.
» g; is the last bit of k,.o @ A (which the evaluator receives)

This allows us to explain our next optimization more clearly...

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 43

Half-Gate Evaluation of AND

We can now half the size of the AND gates...

Garbler knows for an AND gate
> kg, kg, pa, pp and A.
Evaluator knows for an AND gate
> k2, kP, ea and ep.

We give a gate which only requires two ciphertexts

Recall from earlier Hy g(X) is an encryption under a fixed key k with
a gate label G.
» To simplify notation we will write H(X) = Hy g(X) with the key
and gate label being implicit.
» We use H(X) in the following optimization in a different way
than before

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 44

Half-Gate Evaluation of AND: Garbler
Define the output zero wire as...
KO = H(KQ @ pa- D) & H(KY @ po - A) @ pa- pp - A
The garbled AND gate is then the two values

Ey = H(ky) © H(kp) @ pa- A,
Es = H(KQ) ® H(k}) @ K.

Recall the garbler knows k2, k2, pa, pp and A and

kKl =K & A,
k= k)@ A.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 45

Half-Gate Evaluation of AND: Evaluator
The evaluator now knows kZ, k{j, €a, €p, E1 and Eo.

They then compute
H(k2) @ es- (E2 ® kP) & H(kP) & ey - E
When e, = 0 and e, = 0 this is equal to
H(k3) & H(k) = H(k} @ a- D) & H(k§ & b A),
= H(KS @ pa- D) @ H(K) & pp - 1),
=k @ pa-pp- A,
=kl@a-b-A,

sincea®ps=€e;=0and b® pp = e, = 0.

Which is exactly what an AND gate should compute

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 46

Half-Gate Evaluation of AND: Evaluator
As another example take e; =0 and e, = 1.

H(kZ) @ H(kP) @ E;
=HK @ a-A) e HKE)® HKY) @ HK)) @ pa- A,
= H(KS @ pa- D)@ HK)*P) @ a- A
=HK ®pa- D)@ Hko(1ob)-A)da A
=HK @ pa- D)@ Hkg® pp-A) B a-A
=k @papp-Aea-A
=kKlea (1eb)-Asa A
=K®a-b-A
sincea®ps=€e;=0and b® pp =€ = 1.

Checking the other two possibilities for e; and e, results in the same
equation

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 47

Oblivious Transfer

Before giving Yao’s MPC protocol we need another cryptographic

tool

Sender

Receiver

Mo, M—

oT

N.P. Smart

Computing on Encrypted Data

‘ KU LEUVEN

Slide 48

Simple OT Protocol

A simple passively secure OT protocol can be given by

Sender
C «+ E(Fp)

Q1 %C—Qo
k < (2/qZ)
Ci« [k]-P
Eo < Mo + [K] - Qo
Ei < My + [K] - Q4

Receiver

X « (Z/qL)
Qp« [x]-P

Q1_b<—C—Qb

Mb<—Eb—[X]~C1

N.P. Smart
Computing on Encrypted Data

Slide 49

‘ KU LEUVEN

Simple OT Protocol

Above protocol is basically two lots of EIGamal encryption
» Sender has choice of two public keys Qy and Q; to use.
» Sender does not know which key is “real”
» Receiver does not the private key of the Q;_ public key

Use M, as the key to one message, and M; as the key to another.

The actual message can then be sent using symmetric crypto if
needs be.

It is only passively secure.
» But what does secure mean?

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 50

Security of OT

An OT protocol is secure if:

Sender Security: The receiver cannot learn anything about M;_j,
» In above protocol this holds due to DDH hardness

» A receiver who breaks this can be turned into an adversary to
solve DDH.

Receiver Security: The sender cannot learn anything about the bit b
» The above protocol is perfectly secure in this respect.

» There is a perfect simulation of the receiver, where there is no
hidden bit b.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 51

Yao’s Two Party Protocol

So we now have the building blocks for Yao’s two party protocol.
We first assume that the function is of the form

(1, ¥2) = F(x1,X2)

where

» Xxq (resp. yq) is party one’s input (resp. output)

> Xo (resp. y») is party two’s input (resp. output)
We now give a passively secure protocol (so having only a passively
secure OT is OK).

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 52

Yao’s Two Party Protocol

Step 1:
Party one (the circuit garbler) creates a garbled circuit for F

(G, (h,k),(01,02))

where
» G is the set of garbled gates
I; is the input wire label table for party one.
I is the input wire label table for party two
Oy is the output wire label table for party one.
O is the output wire label table for party two.

v

v

v

v

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 53

Yao’s Two Party Protocol

Step 2:
The circuit garbler sends G to party two.

The circuit garbler also sends the values in /; corresponding to its
input to the function

» So if the garbler wants to input bit b on wire w then it sends to
party one the value (k%, eB).

» This reveals nothing about the actual input as k& is a random
key, and p,, remains hidden.

The circuit garbler also sends the table O, over to party two.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 54

Yao’s Two Party Protocol

Step 3:
The players now execute at OT protocol.

» One for each input wire w for player two.

Player two acts as the receiver with input bit the input he wants for
the function.

Player one acts as the sender with the two “messages”
mo = (kVOV7 esv) and m = (kl;lw elv)

So if player two had input bit 0 he would learn (k2, €9,) but not
(Kiy» €0)-

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 55

Yao’s Two Party Protocol

Step 4:
The receiver (the circuit evaluator) can now evaluate the garbled
circuit to get the garbled output wire labels.

Using O- the receiver can now decode his output to the value y».

The receiver then sends the rest of the output wire labels back to
Player one.

Step 5:
Player one can decode his output value y; using this data and the
table Oy.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 56

String Comparison

Sometimes we can use OT to do simple function evaluation without
using Garbled Circuits at all

Suppose P; has a bit string x1, ..., Xn.
Suppose P, has a bit string y1, ..., yn.
They want to test if the two strings are equal

We present a protocol that gives P this information
» For P; to get the info just run it in reverse

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 57

String Equality Check

The protocol goes as follows...

» Party P; generates random 128-bit inputs strings (r?, ') for
i=1,...,n.
The parties run n OT protocols
» Party Py’s input to the i-th OT is (r?, r').
» Party P.’s input to the j-th OT is y;.
» Party P, learns r/.

Party P; computes X = &, r".
Party P, computes Y = @, r/".
Party P; sends P- the value X.

If X =Y then P, accepts.

v

v

v

v

v

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 58

Why is Yao not actively secure?

In basic Yao we have a circuit creator and a circuit evaluator.

The evaluator really cannot cheat at all
» They just get input and then do stuff

» This assumes an actively secure OT protocol is used

» The earlier OT protocol is not actively secure.
» But for our purposes lets just assume this can be fixed.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 59

Why is Yao not actively secure?

The circuit creator P; could however create a bogus circuit
Instead of creating a circuit for the function
(r1,¥2) = f(x1, x2)
then could create a circuit for the function
(X2, y2) = (X1, X2)
and hence learn P»’s input.

An obvious solution is to remove this inbalance in the players

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 60

Dual Execution
So now let both parties act as circuit creator and circuit evaluator.

Instead of computing the function

(Y1, y2) = f(x1, x2)

we first transform it to the function

V1@ n,ye®nr)=9g({x,n} {x,r})

Note if we computed the function g via Yao’s method then we do not
need P, to send the garbled outputs back to P;.

P, simply obtains output (y4 @ rq, Yo @ r2)
P> obtains their output from y» ® r, and r».
Ps> sends P; the value y1 @& ry

P; obtains their output from y; ® ry and ry.

v

vV vy

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 61

Dual Execution

Now compute g two ways
» P, acts as evaluator for P;’s circuit
» P, acts as evaluator for Py’s circuit

Player P, will obtain y» @ r» in two ways
» Once on their own
» Once from P4’s evaluation of Ps’s circuit
If they differ then P4’s circuit creation was invalid

In the second evaluation P4 will obtain y4 @ ry in two ways
» Once on their own
» Once from P,’s evaluation of P;’s circuit

If they differ then P»’s circuit creation was invalid

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 62

Attack 1 on Dual Execution

Suppose P; is an adversary
Player P; instead of sending a garbling of the function

V1@ n,y2®nr)=9g({x,n} {x,r})

could send a garbling of the function

(Xe®r,y2®) =9 ({x1,n},{x rn})

From the returned value by P, the attacker can learn x»

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 63

Dual Execution

To avoid this we do an equality check without sending the values
back

The two parties execute Yao twice in each direction
Party P; obtains Ay = (y1 @ r1, 2 @).

Party P, obtains Ao = (y1 @ r1, Y2 @).

The parties run the equality check on Ay and As.

If OK P; outputs y; and P, outputs y».

This uses the string equality testing protocol from earlier

v

v

v

v

v

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 64

Attack 2 on Dual Execution

Again we assume P4 is the bad party.
Suppose P; wants to learn the first bit of x», call this bit z.

Instead of creating a circuit for the function g above, party P; now
creates a circuit for

(yviern®(z]0...0),y2®r)=g({x,rn},{x,r})

When we run the equality check
» The equality check passesif z=0
» The equality check fails if z = 1
This party P; learns one bit (indeed any bit he chooses) of P,’s input

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 65

Cut-and-Choose

The previous attack was because P; could send P, a bogus circuit.

So we stop this by now making each party send each other two
circuits.

So party P» receives two garbled circuits from Py, Gy and G;.

Party P, now flips a bit b € {0, 1} and asks P; to reveal the
randomness used to generate Gi_p.

» P, can then check that Gy_p, is the correct function.
Then P, evaluates Gy as usual.

This means P; only has a 50 percent change of providing a fake
circuit.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 66

Attack 1 on the OT

But still Py can learn a bit of Py’s input with 100 percent probability.

Now when executing the OT protocol for the un-opened circuit for
P,’s first input wire, party Py provides the input to the OT of (19, f1)

» r0is the correct input wire value for the bit 0.
» f1is a fake input wire value for the bit 1.

If Po>’s input bit was zero then the protocol will succeed

If Po’s input bit was one, then the protocol will not succeed
» As the equality test will fail, as P, will evaluate garbage.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 67

Fixing the OT
The problem is that each OT input corresponds to a single wire
input.

We now replace the circuit
en,yaer)=9({x,nt {x,r})
by the circuit

W en,y28r)="h{zi,n} {22, r2})
where z; € {0, 1}%Xl and we define (say)

Xi :(691 1 (’) % 1 (’+32) . 7@I,Si1zgf+lx1|—32)).
Thus each bit of x; is a sum of s, bits in z;

Now if a bit in the OT is provided wrong the protocol will always
abort (with high probability).

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 68

Majority Voting

We want the cheating probability to be smaller than 1/2.

So we produce more circuits, say s; of them

We open half of them to check all is OK with their construction
But now we have s;/2 circuits to evaluate

To obtain output we take the majority verdict

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 69

Majority Voting

To win this game the adversary has to
» Get all opened circuits to be good.
» Get majority of the evaluated circuits to be bad.

Probability that an adversary gets an invalid circuit passed this
check is about 2-51/4,

For intuition about this, suppose half are bad and half are good

» A single bad circuit is not opened with probability 1,/2

» We need the bad circuits to agree with the majority output

» Thus we need more than sy /4 bad circuits to be not opened.
A more careful analysis gives a better value for s;.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 70

Why Take Majority?

The problem is
» |f you abort, since you know you are being cheated, you leak
information
» The Adv can make the minority wrong circuits be ones which
compute garbage if an input bit is one.
» Thus we need to take the majority as the answer and not abort.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 71

Attack 2 on the OT

Recall we now take s; circuits and evaluate them.
Suppose P»’s input size is ¢ bits then we need to evaluate ¢- s, OT’s.

The attacker could send different inputs in the different executions of
the OT on the same input bit.

To fix this we need to execute the ¢ - s, OT’s as only ¢ OTs.

Each OT transfers the input wire labels for a specific wire for all
circuits in one go.

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 72

Summary

This game of attack-and-fix does actually terminate...
And further optimizations can be provided.
We have just given the flavour of the methodology above.

In the end we can produce two party actively secure computation
using Yao

It is actually both practical and efficient

Can evaluate circuits of many billions of gates quite easily

N.P. Smart | KU LEUVEN
Computing on Encrypted Data Slide 73

Any Questions?

N.P. Smart ‘ KU LEUVEN
Computing on Encrypted Data Slide 74

	Introduction
	Multi-Party Computation
	Fully Homomorphic Encryption
	Somewhat Homomorphic Encryption

	FHE and MPC
	Yao's Garbled Circuit Based 2-PC Method
	Garbled Circuits: Simple Version
	Garbled Circuits: Complex Version
	Oblivious Transfer
	Yao's Passively Secure Protocol

	Short Diversion: String Comparison
	Making Yao Actively Secure
	Dual Execution
	Cut-And-Choose
	Increasing the number of circuits

