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1 Changes
This is v1.3 of the Rust-based implementation system for SCALE.

1.1 Current Known Bugs
1. Operator arithmetic operations for ClearInteger<K> and SecretInteger<K>.

2. Functions with multiple return values can cause a problem for the compiler, especially when they are not-inlined.
Thus avoid these. If you get weird behaviour this might be the reason.

3. When compiling some loops the Rust-to-Wasm compiler sometimes creates registers which are ‘assumed’ to
be zero-assigned on first use. No idea why this happens, but you can see it by compiling SCALE with the flag
-DDEBUG. This seems to cause no effect for normal programs, but will cause problems (possibly) for programs
called via the restart mechanism. To avoid this problem we issue a clear_register command at the
start of each program, and a Rust restart command deletes the memory allocated for testing and the wasm
stack before executing the SCALE restart opcode.

1.2 Changes in version 1.3 from 1.2
1. A little more of the emulation, in the testing mode, is correct. This aids a bit with debugging.

2. A bug related to function calling has been fixed.

3. Optimized SecretBit operations.

4.
√
x and log(x) operations have been implemented for ClearFloat and SecretFloat data types. Note,

this is a definite improvement on Mamba, where they were not implemented at all.

5. A simple version of ORAM style operation is now implemented. This enables reading/writing to Arrays and
Slices given a SecretModp index.

6. We can now support Arrays and Slices of ClearFloat and SecretFloat values. By extension by
copying how the allocators are done for these types, one can also support arrays and slices of arbitrary types
which consist of multiple elements of the same base-type. Eventually this needs to be extended to types which
consist of elements of different base types.

7. You no longer need to define channels and players using the keywords Channel and Player. This means you
channels and players are normal i64 values, and hence can be programmatically defined, i.e. via loop values
etc.

1.3 Changes in version 1.2 from 1.1
1. Decision has been made to not port the vectorized instructions over to Rust. The reason is that they require

changes to the assembler, the compiler and require the programmer to jump through hoops to use them. Instead
we are implementing optimization pipelines and changes to the runtime to allow the same ‘effects’, at time
critical components, to be applied to programs without the need for the user to explicitly work this out and
program this themselves. The first change is a merging of TRIPLE and SQUARE instructions, which is oblivious
to the user, but gives for some programs a ten percent performance improvement.

2. The second change is a ‘vectorized’ private input and output routine for Arrays and Slices, which under-the-hood
works via the SCALE memory (as opposed to the usual SCALE method of vectorizations by having contiguous
register names).

3. The third change is some more advanced operations on Arrays and Slices, which have been propogated into our
Rust standard library.

4



4. The overall effect is that programs in the Rust pipeline now are about as efficient as the equivalent programs in
the Mamba pipeline.

5. Added data types ClearFloat<V,P> and SecretFloat<V,P> to replicate the cfloat and sfloat in Mamba.
The maths library for these datatypes is not yet fully implemented.

6. Almost all data types now have a means for generating random values within them.

7. Some operations on integers and bit operations have had their API changed a little.

8. Modified the way restart() is compiled to avoid a bug when using the restart functionality and rust pro-
grams, for a similar reason we issue a clear_register operation now at the start of each program. See the
‘Known Bugs’ section above. (NPS:) There is still a bug here. Will fix soon

1.4 Changes in version 1.1 from 1.0
1. Some functions which should have been unsafe are now marked as unsafe.

2. Added documentation of some functions related to bit processing.

3. Added in comparison member functions for the ClearInteger<K> type.

4. Fixed some arithmetic bugs in ClearInteger<K> and SecretInteger<K> types.

5. Round complexity between Rust pipeline and the old Mamba pipeline is the same now for some test bench-
marking functions.

6. The ClearIEEE class can now process arithmetic operations as well as having a full math library, which is
relatively fast. Thus the ClearIEEE type should be preferred for all clear operations on floating point values.

7. A full math library for SecretIEEE is implemented.

8. The crate for ClearIEEE and SecretIEEE is now called simply scale_std::ieee

9. Added fixed point operations with new data types ClearFixed<K,F> and SecretFixed<K,F>. Note, the
SecretFixed<K,F> is generally much faster than the SecretIEEE type.

10. Conversion between ClearFixed<K,F> and ClearIEEE is possible by means of the respective from
functions.

11. Arrays/Slices can now be created for the datatypes ClearIEEE, SecretIEEE, ClearFixed<K,F> and
SecretFixed<K,F>.

12. Memory management is now dynamic and done via the SCALE runtime, thus the need to define memory size
at the start of a SCALE Rust program has gone.

13. Array and Slice are now more robust and closer to what the standard Rust Vec type does. Note use of get
on an Array and Slice costs at runtime so use get_unchecked where possible.
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2 Introduction

2.1 Installation
You may need to be on the Rust nightly build and you probably also need to add wasm support by typing

rustup target add wasm32-unknown-unknown

2.2 General Rust Programs
Programs live in folders (just like in Mamba), however the location of the Rust program folders is now in

RustPrograms/examples/<program name>/

The main Rust program in this folder should be called main.rs. To compile the program in the above folder you
execute

./compile-rust.sh <program name>

This will execute the compiler and place the associated .bc and .sch files within the above folder. To run the
program you then have to execute

./Player.x 0 RustPrograms/examples/<program name>/

There are various options you can pass to the compiler, these include

• -A. This places the associated Scale assembly files .asm in the program folder. These are the assembly files
before they have been passed through the scasm optimization steps.

Any other options (like -O1, -O2, -O3) get passed to scasm.

Your Rust programs should start with the following preamble:

# ! [ n o s t d ]
# ! [ no main ]
# ! [ f e a t u r e ( c o n s t e v a l u a t a b l e c h e c k e d ) ]

#[ s c a l e : : main (KAPPA = 40) ]
#[ i n l i n e ( a lways ) ]
fn main ( ) {

/ / your code goes here
}

The main! part defines the KAPPA parameter, which is the global statistical security parameter which your pro-
gram will use. Unlike in Mamba we define a single such parameter which is used for all operations; e.g. the
SecretInteger and SecretFixed types (and for the sfloat when it ends up being defined).

2.3 Testing
The compiler can compile into two different targets, the real SCALE target, which is done as above, and a Test target,
which is used to test the system. In the test system the Rust program is simply run on a single machine, and all secret
operations are performed in the clear. The other difference between the two modes is in the operation of the test
operations which are given later. In the SCALE target they create a write to memory, in the Test target they read from
the memory output by the SCALE execution and then compare this value to the value which is being tested.

Note: The test instructions need to occur on a well defined, unique, line. Thus you cannot place a test function call
within a loop. All test operations should be executed within the main function. The line number needs to be less than
1000; if you execute a test instruction on a line number greater than 1000 then undefined behaviour can occur.

To compile and run the test target you invoke
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./Scripts/test_wasm.sh <program name>

which will take all *.rs files in RustPrograms/examples/<program name>, convert them to wasm, and
then to scale assembly and then run them in the SCALE test environment. After that it will run the same programs in
the clear and compare their approprate test calls.

To compile and run all the test programs on the current configuration defined by Setup.x use

./Scripts/test_wasm.sh

To compile and run all the test programs on all the test configurations you invoke

./run_tests.sh test_wasm

2.4 Things Working/Not Working
The advantage of using the Rust over Mamba driving language is that we now have a means to start defining more
complex operations in a clearer manner. One should think of Mamba not as a language, but as a high-level assembler.

2.4.1 Not Working

Currently you cannot access from Rust the following features of Scale

• More than one online thread.

• Some native SCALE printing operations.

• sfloat, cfloat.

We are currently working on fixing the above.
The vectorized (i.e. SIMD) instructions in SCALE will not be supported by the Rust pipeline. To access them the

programmer would need to use special constructs etc, which make using them difficult. The gain is marginal, over
program complexity, and we can achieve the same effect by other changes in the runtime which can apply to a wider
class of programs.

2.4.2 Working

In comparison to Mamba the following work or are improvements in our Rust compilation pipeline.

• You cannot directly access comparison etc operations on ClearModp/SecretModp types, after all what does
comparison of two integers modulo p mean mathematically? Instead these operations are available via the
ClearInteger<K>/SecretInteger<K> types. Thus you need to coerce your value into one of these
types first (which costs nothing), and then apply the desired operation. This avoids programmer errors, as the
programmer needs to know how big an integer is before it can be compared to another.

• Recursive function calls.

• Automatic assignment of mutable local variables across conditional basic blocks; avoiding the need to manually
work out memory allocations.

• No distinction between the old ‘python’-for loops (unrolled) vs ‘Mamba’-for loops (rolled). The distinction is
determined by the compiler as an optimization.

• Conveniently allocating memory instead of having to keep track of it manually in the code.

• Dynamic memory allocation and deletion for arrays etc is done automatically.

• Full math library for the ClearIEEE and SecretIEEE types (none of which are available in Mamba).
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• In working through the code we found lots of assumptions which Mamba makes which are not strictly true. For
example when doing integer comparison of objects modulo p it (sometimes) assumes that the underlying integer
is less than 64-bits in size. Whilst for a lot of code this might be perfectly correct, for some use cases it is not
(for example fixed point arithmetic of high precision for large numbers). Thus when making the libraries for
arithmetic we have assumed all possible use cases are possible. Thus code may be less efficient than Mamba,
but it will be hopefully more correct.

2.5 Under The Hood: How the magic works...
Wasm is a stack based assembly language. There are no registers. Instead, all instruction arguments are pushed and
popped on a stack. As an example, take 42 + 3 in wasm. First 42 is pushed to the stack, then 3 is pushed to the stack
and finally add pops two values off the stack, adds them and pushes the result back onto the stack.

i 3 2 . c o n s t 42
i 3 2 . c o n s t 3
i 3 2 . add

Scale is a register based assembly language. While it does have a stack, meaning we could emulate wasm 1:1 by
generating

l d i n t r0 42
p u s h i n t r0

l d i n t r0 3
p u s h i n t r0

p o p i n t r1
p o p i n t r2
a d d i n t r3 r1 r2
p u s h i n t r3

But that would be very inefficient.

Basic Transpilation What we do instead is to essentially execute the wasm, just like mamba did with its source. So
when we see

i 3 2 . c o n s t 42

we push an Operand::Value(Const::Int(42)) to the wasca-stack. The wasca-stack only exists during tran-
spilation and is entirely unrelated to the push* and pop* operations from scale.

When we see

i 3 2 . add

We pop two values off the wasca-stack. If the values are Operand::Value and not Operand::Register, we
begin by generating

l d i n t s o m e n e w r e g i s t e r p o p p e d o p e r a n d v a l u e

This conversion is automatically done by the val_to_reg function. The somenewregister is ‘allocated’ by in-
creasing a global counter in wasca. This way we always get a new register and guarantee that all registers are used in
a SSA manner.

Now that we have two Operand::Register (either directly from popping or from the conversion) we allocate
a result register and generate the add instruction.
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a d d i n t r e s u l t r e g reg1 reg2

Finally, we push an Operand::Register for the result register onto the wasca-stack. The next operation can then
pop the value off the stack in order to obtain its arguments.

2.5.1 Local variables

Sometimes a stack based approach makes certain code very complex or nearly impossible to write. For this reason
wasm has function-local variables. Every function declares at the start which local variables it has and of which type
they are. Unfortunately wasm only has i32 i64 f32 f64 i128 available to us. Technically there is also an
externref meta-type that allows code to create its own types, but LLVM (and thus Rust) does not support this yet. This
means that while we have 5 wasm types that could map to the five SCALE types (where here we use their Rust names)
i64 SecretI64 ClearModp SecretModp SecretBit. The wasm types have no relation to the types used
from Rust, beyond that i64 in Rust is also i64 in wasm. Unfortunately u64 in Rust is also i64 in wasm, and the
only way to notice this in wasm is that there are some unsigned operations on i64. We can ignore all this for most of
the time.

The interesting part is that SecretModp, SecretI64, and ClearModp are all encoded as f64, f32 and
i128, without ever using them as such. The reason this works out at all is that we do not translate operations on these
types to wasm operations, but instead translate them to extern function calls which we will lower to the appropriate
instructions directly. SecretBit is encoded as SecretI64 by being converted to and from SecretI64 at all use
sites. This is not very efficient, but we will get efficiency back once LLVM and Rust permit us to declare externref
types.

2.5.2 Extern function calls

Operations on anything but i64 as well as any SCALE instructions that just does not have an equivalent in wasm are
represented as extern function calls. As an example, take the adds instruction. Its arguments as per the documentation
are (dest: sw, left: s, right: s). From this, the transpiler automatically figures out that there is one
return (output) value and two arguments. In Rust, this generates a

e x t er n ”C” {
fn a d d s ( l e f t : S e c r e t , r i g h t : S e c r e t ) −> S e c r e t ;

}
Any call to __adds will cause the wasm code to leave two values on the wasm stack and expect that after the call the
return value will be on the wasm stack. So, similarly to the builtin addition for i64, we will pop two values off the
stack, make sure they are registers by optionally generating lds instructions and then push the return register onto the
stack.

Some SCALE instructions have multiple output/return values. Examples are the triple and square instructions.
Unfortunately Rust/LLVM does not really support this yet, so we had to work around it a bit. For these functions we
generate a push_multi_arg_triple function which has no return values at all. This function pushes values onto
the transpiler stack, even though the wasm stack would not contain any values. Remember: The transpiler stack has
nothing to do with the SCALE stack at all, it is just equivalent to the wasm stack most of the time, unless we do hacks
as described in this section. Now, after these values are on the stack, we use transpiler stack manipulation functions
(extern functions by themselves) to get the values back. In essence, the __triple ‘extern’ function is thus not an
extern function but looks like

#[ i n l i n e ( a lways ) ]
pub fn t r i p l e ( ) −> ( S e c r e t , S e c r e t , S e c r e t ) {

p u s h m u l t i a r g t r i p l e ( ) ;
l e t a = p o p m u l t i a r g ( ) ;
l e t b = p o p m u l t i a r g ( ) ;
l e t c = p o p m u l t i a r g ( ) ;
( a , b , c )

}
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Function calls: Most function calls in Rust do not actually end up with a function call in wasm. This is because
usually the optimizer inlines function calls aggressively. In some cases we do want function calls instead of aggressive
inlining. In the future there will be a way to force the compiler to generate a function call at specific sites.

2.5.3 Memory Management

Memory is allocated by use of the New and Delete operations in the SCALE runtime. This is mainly hidden from the
user, and the user should probably not use these (just as a C++ programmer should probably avoid new and delete
and stick to the STL).

For single value allocations, we have the scale_std::heap::Box that works similarly to Array, but has no
indices on its operations. We should analyze whether we need any other memory datastructures and how much users
should be able to nest them (array of slices of boxes or similar).

Right now we use regular Rust globals for the memory allocator. This has the disadvantage of requiring memory
itself (in the compiler-used memory region). This makes various operations very verbose (10-20 instructions for a
single memor allcation invocation). If we add special functions that handle the memory allocations for us in wasca,
we can optimize all this to just use a single register per memory bank.
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3 Rust Dummies Guide
Using Rust has some advantages in that we have strong typing and the programming language has been designed to be
safe in terms of stopping programmers making errors. However, these advantages come at a disadvantage (especially
if you are used to Python or C++). So in this section we give an informal overview of how these differences affect
programming in our Rust system, and in particular with relevance to SCALE.

3.1 Strong Typing
We take advantage of strong typing to ensure that the types correspond to mathematically what they represent. For
efficiency we give access to the basic SCALE internal types i64, ClearModp, SecretModp, SecretI64 and
SecretBit. But in MAMBA you could do something like

program . b i t l e n g t h = 16
program . s e c u r i t y = 40

a = s i n t ( 4 )
b = s i n t ( 5 )
c = a<b

But this is mathematically meaningless, what is meant here is that you are going to ‘think’ of sint values as integers
of bit size sixteen and then do the comparison assuming that the numbers are indeed of size bounded by 216. After all
a comparison of values in the finite field Fp really makes no mathematical sense.

In our Rust system we want to avoid such implicit assumptions that a reader of your code needs to make. Thus we
provide types which help capture what you really want to do. So the above MAMBA code would become

l e t a : S e c r e t I n t e g e r <16> = S e c r e t I n t e g e r : : from ( 4 ) ;
l e t b : S e c r e t I n t e g e r <16> = S e c r e t I n t e g e r : : from ( 5 ) ;
l e t c = a . l t ( b ) ;

The type of the value c is a SecretModp value. We use the member function notation a.lt(b) instead of a<b to
force the programmer to realise that you cannot use the output of the comparison in an if-statement.

Another aspect of this strong typing is the above use of the from command. This is used to convert one type to
another, which needs to be done explicitly in almost all case.

3.2 Mutable vs Non-Mutable
Common problems in programs are that people accidentally re-assign a variable and then want the old value again.
This is because in languages like C++ or python all variables are mutable by default. In C++ it is usually considered
good practice to define all inputs to a function to be const if they are not going to be returned as changed for this
reason. Rust goes one step further and assumes all variables are non-mutable by default. Thus you cannot do

l e t a = 3 ;
i f s o m e c o n d i t i o n {

a = a + 1 ;
}

To enable this you explicitly have to signal that the variable is going to be changed by writing

l e t mut a = 3 ;
i f s o m e c o n d i t i o n {

a = a + 1 ;
}
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3.3 Container Types
Container types are really important in programming, yet in Rust they can be a bit confusing mainly due to the
mutability issue above, and the need to maintain safety of the language. The Array and Slice types we define are
very similar to the standard Vec type in Rust, and hopefully eventually they will be the same. The difference between
an Array and a Slice is that the size of an Array is known at compile time, whereas a Slice size may not. This
distinction enables us to do some optimizations.

Suppose you have an array of ten ClearModp values

l e t mut a : Array<ClearModp , 10> = Array : : u n i n i t i a l i z e d ( ) ;

You may want to assign values to the array elements, or use them later. There are four ways of getting an array element:

1. A.get(i) returns a reference to the array and performs an out of bounds check.

2. A.get_unchecked(i) returns a reference to the array and does not perform an out of bounds check.

3. A.get_mut(i) returns a mutable reference to the array and performs an out of bounds check.

4. A.get_mut_unchecked(i) returns a mutable reference to the array and does not perform an out of bounds
check.

When accessing the reference it comes wrapped in an Option when using the checked values, thus you need to
unwrap this option before using the item. The unwrapping itself produces a guarded object, to remove the Guard
you need to de-reference it.

Thus when you use a get, but not a get_unchecked, you need to unwrap the result, then in both cases you
should de-reference, i.e. you do

p r i n t l n ! ( ” a [ 2 ] = ” ,∗ a . g e t ( 2 ) . unwrap ( ) ) ;
p r i n t l n ! ( ” a [ 2 ] = ” ,∗ a . g e t u n c h e c k e d ( 2 ) ) ;

However, for printing we have added some code to make the following more syntactically nicer code work,

p r i n t l n ! ( ” a [ 2 ] = ” , a . g e t ( 2 ) . unwrap ( ) ) ;
p r i n t l n ! ( ” a [ 2 ] = ” , a . g e t u n c h e c k e d ( 2 ) ) ;

If you want to access an element and not change it you should use one of the non-mutable get operations, if
you want to change an element you should access one of the mutable, i.e. get_mut, operations. This is particularly
relevant when the internal object is another Array or Slice.

l e t mut a : S l i c e <Array<i64 , 2>> = S l i c e : : u n i n i t i a l i z e d ( 5 ) ;
f o r i in 0 . . 5 {

f o r j in 0 . . 2 {
a . g e t m u t ( i ) . unwrap ( ) . s e t ( j , &(( i ∗ 2 + j ) as i 6 4 ) ) ;

}
}

To modify elements in a simple Array or Slice use.

l e t mut a : Array<ClearModp , 10> = Array : : u n i n i t i a l i z e d ( ) ;
a . s e t ( 2 , &ClearModp : : from ( 1 ) ) ;
a . s e t ( 3 , &ClearModp : : from ( 4 ) ) ;

Now suppose you have a Slice of Arrays

l e t mut S : S l i c e <Array<ClearModp , 2>> = S l i c e : : u n i n i t i a l i z e d ( 5 ) ;

and after some processing you would like to take the fourth element of the Slice.

l e t mut A = ∗S . g e t m u t ( 4 ) . unwrap ( ) ;
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The value A is now an Array of length two. What you really want is for A to be a Copy of S. But not all types in
Rust enable copying, whilst our basic types do the Array and Slice types do not. Thus in C++ terms in the above
code the A value is really just a ‘pointer’ to the fourth Array in the Slice S. Thus the effect would be that if you
changed elements in A then you also change the elements in S. In addition if S goes out of scope and gets deleted then
so will A.

To avoid this problem you need to clone the output of the get as in

l e t mut A = S . g e t ( 4 ) . unwrap ( ) . c l o n e ( ) ;

But you only need to do this as the Array type is not copyable. If you had the following

l e t mut A : Array<ClearModp , 10> = Array : : u n i n i t i a l i z e d ( ) ;
a . s e t ( 3 , ClearModp : : from ( 4 ) ) ;
l e t mut a = ∗A. g e t ( 3 ) . unwrap ( ) ;
a = a + 3 ;

then a really is a copy of the entry in A. So at the end we have a = 7 and A[3] = 4.
The unchecked versions of the get operations should only be used if you know what you are doing. However,

the checked versions do have a performance cost; they require a run-time branch which may impact the optimizers
ability to reduce the total number of rounds of communication.

For more details on Options see

• https://doc.rust-lang.org/std/option/
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4 SCALE Dummies Guide
There are a lot of types defined here, and to exploit the most from the system you need to (kind of) understand how
the MPC engine works under-the-hood. As most people will not be able to do that we here provide a quick dummy
guide to get the most performance out of the system. In this section we are mainly talking about your programs, and
not system tuning for an application. The latter topic is far more of a black-art alas.

4.1 Integer Types
There two basic clear integer types i64 and ClearModp. The former represent 64-bit integers and the latter in-
tegers modulo p, for the prime you have chosen. These work at roughly machine speed, bar any overhead due to
the VM. There is an advanced clear integer types Integer<K> which holds an integer in Z as a ClearModp but
with the ‘soft’ gaurantee that the integer lies in Z〈k〉. On the secret side these are duplicated by the SecretI64,
SecretModp and SecretInteger<K> types.

Note the secret operations are always more expensive than the clear operations, and that SecretI64 operations
are generally more expensive than SecretModp operations. The SecretInteger<K> type is more costly than a
SecretModp type, as it has to worry about size issues. Conversion between SecretModp and SecretI64 types
are expensive, thus best avoided if possible. Conversion betwen SecretModp and SecretInteger<K> types if
for free, as it is assumed the programmer knows the conversion will be ‘valid’.

But there seems to be more arithmetic operations for SecretI64 than for SecretModp. For example, you
cannot compare two SecretModp values (after all integers modulo p have no notion of ‘size’, so mathematically this
makes no sense).

However, in MPC algorithms we often use SecretModp values to hold integers (i.e. elements of Z) and compute
on them whilst keeping a mental note of how big they are. This means we can perform operations by keeping in the
SecretModp domain, without needing to convert to SecretI64 values.

l e t a = SecretModp : : from ( 1 0 ) ;
l e t b = SecretModp : : from ( 2 0 ) ;

l e t c = a∗b ;
l e t d = a+b ;

/ / Suppose we now want t o ”compare” c and d .
/ / We know t h e max s i z e i s 9 b i t s ( c i s 200 ,
/ / which i s a t l e a s t 9 b i t s i n s i g n e d r e p r e s e n t a t i o n )
l e t c i : S e c r e t I n t e g e r <9> = S e c r e t I n t e g e r : : from ( c ) ;
l e t d i : S e c r e t I n t e g e r <9> = S e c r e t I n t e g e r : : from ( d ) ;
l e t compare = c i . l t ( d i ) ;

The above is much faster than mapping c and d over to the SecretI64 domain and doing the comparison there.
Obviously the above code is a bit fake, as you know what the values are, but you can see the idea.

4.2 Floating Point Types
In general ClearIEEE should be your preferred clear floating point type, as it provides almost machine level per-
formance. The preferred secret floating point type is SecretFixed<K,F> as it is much faster. However, it only
provides fixed point arithmetic. If true floating point is required then SecretFloat<V,P> is better, but it can result
in programs which take ages to compile. For faster compilation, but slower programs, use SecretIEEE

4.3 Bits
There is a SecretBit type. Due to some current limitations of the intermediate wasm representation there is a lot
of conversions between SecretBit types and SecretModp types under the hood. This results in slower programs
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than are really necessary. Once wasm has been extended to cope with more than four basic register types this restriction
will be removed.
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5 Basic Rust Types
The main thing to keep in mind is that currently the only Rust type supported is the i64 type. However, if you use
another type it might cause neither an error nor a crash of the compiler (at the moment, we want to fix this); so you
might get undefined behaviour.

While it works to just use integral constants almost everywhere, it can be more efficient to use the ConstI32
and ConstU32 values instead. This is because for example ClearModp::from(42) will end up creating two
assembly instructions, one to load the 42 into a regint register, the second one for a conversion from regint to cint. If
ClearModp::from(ConstI32::<42>) is used instead, you get just one assembly instruction to directly load a
constant into a cint register.

Similarly there are operations which are only supported on constants. One example is dividing a SecretModp
by an integer, this only works when using ConstI32, as MPC has a special (and thus very efficient) instruction for
this kind of division.

All of the basic SCALE types in Rust support the Copy and Clone traits.

5.1 i64
The Rust type i64 corresponds to the regint type in the underlying SCALE virtual machine. You create a value of type
i64 (everything in this document also applies to u64) by appending _i64 to a number, like in 42_i64. Mostly you
do not need this postfix, but sometimes the compiler cannot figure out that you meant to use an i64 and may thus give
you type mismatch errors because it used a fallback to i32.

5.1.1 Conversion of Data

i64::from(x)

You can convert from a ClearModp value to an i64.

l e t ca = ClearModp : : from ( 1 0 ) ;
l e t a= i 6 4 : : from ( ca ) ;

5.1.2 IO

The IO class functions for i64 datatypes can be access via the following commands:

i64::input(x)

Loads an i64 from the channel x.

l e t a= i 6 4 : : input ( 1 0 ) ;

a.output(x)

Writes an i64 to channel x.

l e t v : i 6 4 = 1 ;
v . o u t p u t ( 1 0 ) ;

5.1.3 Comparisons

The following ‘operators’ can be applied between two i64 values or a i64 value and a SecretI64 value. The output
being an i64 value if the two arguments are i64, and a SecretBit value otherwise. As the result of the operator (when
a SecretBit) cannot be used in a conditional branch, we use the member function notation for such ‘operators’, as
opposed to the operator notation. Thus syntactically the programmer is less likely to make a mistake.
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a.gt(x), a.ge(x), a.lt(x), a.le(x), a.gt(x), a.eq(x), a.ne(x)

5.1.4 Other Functions

x.rand()

Produces a pseudo-random number in the range [0, . . . , x− 1]. Note, every player gets the same value; this is used for
randomized algorithms where the algorithm needs to make a random choice.

l e t r = x . r and ( ) ;

i64::randomize()

Produces a random number in the range [0, . . . , 264 − 1]. This random number is the ‘same’ for all players.

l e t a = i 6 4 : : r andomize ( ) ;

5.1.5 Memory Access

a.store_in_mem(x)

To store data into memory location 50 say you need to execute, recalling that memory is accessed by 32 bit values.

unsafe { a . s t o r e i n m e m (50 u32 ) ; }

To store to a variable location you need to ensure the x really is an i64 by doing:

l e t x : i 6 4 = 5 0 ;
unsafe { a . s t o r e i n m e m ( x ) ; }

i64::load_from_mem(x)

To load data from memory you do

l e t a= i 6 4 : : load from mem (50 u32 ) ;
l e t x : i 6 4 = 5 0 ;
l e t b= i 6 4 : : load from mem ( x ) ;

5.1.6 Testing Data

black_box(x)

If you just use let a = 1 then the Rust compiler can optimize the variable away. If you really want to treat a as a
regint value in the SCALE runtime then use

l e t a = b l a c k b o x ( 1 ) ;

x.test()

In the SCALE target this writes the regint value x into memory at the address equivalent to the line number in which
test was invoked.

In the Test target this takes a value stored in the regint memory saved on the last SCALE invocation, and compares
it to x. If the two values are the same it prints the value, and the line number in the rust file where this was executed.
Otherwise it aborts.
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x.test_mem(loc)

This compares the value held in variable x to the memory location at position loc, a simple example being

l e t c : i 6 4 = 8 ;
unsafe { c . s t o r e i n m e m (3 u32 ) ; }
l e t d : i 6 4 = 8 ;
d . t e s t mem (3 u32 ) ;

On the SCALE target this is basically a no-op, on the Test target it does this comparison.

x.test_value(y)

Test whether the value held in x is the same as the value held in y. This is the same as x.test() except the value is
compared to y and not the value emulated in the test environment.
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5.2 SecretI64
This is the same as the sregint in the underlying SCALE virtual machine.

5.2.1 Conversion of Data

SecretI64::from(a)

This takes an integer value a and loads it into a value of type SecretI64. You can also pass in an argument of a
SecretModp or a SecretBit.

l e t sa = S e c r e t I 6 4 : : from ( ConstI32 : : <8 >) ;

l e t sb = S e c r e t B i t : : from ( f a l s e ) ;
l e t s s b = S e c r e t I 6 4 : : from ( sb ) ;

/ / See t h e main SCALE manual f o r t h e s e m a n t i c s o f t h i s c o n v e r s i o n
l e t s i = SecretModp : : from ( ConstI32 : : <10 >) ;
l e t s s i = S e c r e t I 6 4 : : from ( s i ) ;

5.2.2 Arithmetic

SecretI64::mult2(a,b)

One can access a multiplication operation which produces a double word output as follows:

l e t s64a = S e c r e t I 6 4 : : from (0 x4000000000000000 i64 +28731371) ;
l e t s64b = S e c r e t I 6 4 : : from (0 x4000000000000000 i64 +985724131) ;
l e t ( high , low )= S e c r e t I 6 4 : : mul t2 ( s64a , s64b ) ;

5.2.3 Bit Twiddling

a.set_bit(b,n)

This sets the n-th bit of a equal to b.

l e t b i t = S e c r e t B i t : : from ( t rue ) ;
l e t sa = S e c r e t I 6 4 : : from ( ConstI32 : : <0 >) ;
l e t sb= sa . s e t b i t ( b i t , ConstU32 : : <10 >) ;

a.get_bit(n)

This returns the n-th bit of a as a SecretBit.

l e t sa = S e c r e t I 6 4 : : from ( 1 2 3 1 2 1 ) ;
l e t sb=sb . g e t b i t ( ConstU32 : : <10 >) ;

5.2.4 Comparisons

The following ‘operators’ can be applied between two SecretI64 values or a SecretI64 value and a i64 value. The
output is a SecretBit value. As the result of the operator cannot be used in a conditional branch, we use the member
function notation for such ‘operators’, as opposed to the operator notation. Thus syntactically the programmer is less
likely to make a mistake.
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a.gt(x), a.ge(x), a.lt(x), a.le(x), a.gt(x), a.eq(x), a.ne(x)

The following give variants which compare just to zero.

a.gtz(), a.gez(), a.ltz(), a.lez(), a.gtz(), a.eqz(), a.nez(x)

5.2.5 Other Functions

SecretI64::randomize()

Produces a (secret) random number in the range [0, . . . , 264 − 1]. This random number is the ‘same’ for all players.

l e t a = S e c r e t I 6 4 : : r andomize ( ) ;

5.2.6 Memory Access

a.store_in_mem(x)

To store data into memory location 50 say you need to execute, recalling that memory is accessed by 32 bit values.

unsafe { sa . s t o r e i n m e m ( ConstU32 : : <50 >) ; }

To store to a variable location you use

l e t x : i 6 4 = 5 0 ;
unsafe { sa . s t o r e i n m e m ( x ) ; }

SecretI64::load_from_mem(x)

To load data from memory you do

l e t sa= S e c r e t I 6 4 : : load from mem ( ConstU32 : : <50 >) ;
l e t x : i 6 4 = 5 0 ;
l e t sb= S e c r e t I 6 4 : : load from mem ( x ) ;

5.2.7 Testing Data

x.test()

In the SCALE target this takes the SecretI64 value x, applies a reveal operation to it, and then writes the resulting
regint value into memory.

In the Test target this takes a value stored in the regint memory saved on the last SCALE invocation, and compares
it to x. If the two values are the same it prints the value, and the line number in the rust file where this was executed.
Otherwise it aborts.

x.test_value(y)

Test whether the value held in x is the same as the value held in y. This is the same as x.test() except the value is
compared to y and not the value emulated in the test environment.
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5.3 ClearModp
This is the same as the cint in the underlying SCALE virtual machine.

5.3.1 Conversion of Data

ClearModp::from(a)

This takes a constant a, a runtime integer i64 or a i64 and loads it into a value of type ClearModp.

l e t ca = CleadModp : : from ( ConstI32 : : <8 >) ;
/ / Works , b u t c r e a t e s m u l t i p l e a s s e m b l y i n s t r u c t i o n s .
l e t cx = CleadModp : : from ( 4 2 ) ;

5.3.2 IO

The IO class functions for ClearModp datatypes can be access via the following commands:

ClearModp::input(x)

Loads an ClearModp from the channel x.

l e t a=ClearModp : : input ( 1 0 ) ;

a.output(x)

Writes an ClearModp to channel x.

l e t v = ClearModp : : from ( ConstI32 : : <1 >) ;
v . o u t p u t ( 1 0 ) ;

5.3.3 Other Operations

x.lengendre()

Computes the legendre symbol of x modulo the prime underlying the ClearModp type

l e t l = x . l e g e n d r e ( ) ;

x.digest()

Computes a pseudo-random digest of the value x.

l e t d = x . d i g e s t ( ) ;

ClearModp::randomize()

Produces a random number in the range [0, . . . , p − 1], where p is the prime underlying the ClearModp type. This
random number is the ‘same’ for all players.

l e t a = ClearModp : : r andomize ( ) ;
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5.3.4 Memory Access

a.store_in_mem(x)

To store data into memory location 50 say you need to execute, recalling that memory is accessed by 32 bit values.

unsafe { ca . s t o r e i n m e m ( ConstU32 : : <50 >) ; }

To store to a variable location you use

l e t x : i 6 4 = 5 0 ;
unsafe { ca . s t o r e i n m e m ( x ) ; }

ClearModp::load_from_mem(x)

To load data from memory you do

l e t ca=ClearModp : : load from mem ( ConstU32 : : <50 >) ;
l e t x : i 6 4 = 5 0 ;
cb=ClearModp : : load from mem ( x ) ;

5.3.5 Testing Data

x.test()

In the SCALE target this takes the ClearModp value x, applies a reveal operation to it, and then writes the resulting
ClearModp value into memory.

In the Test target this takes a value stored in the ClearModp memory saved on the last SCALE invocation, and
compares it to x. If the two values are the same it prints the value, and the line number in the rust file where this was
executed. Otherwise it aborts.

x.test_mem(loc)

This compares the value held in variable x to the memory location at position loc, a simple example being

l e t c = ClearModp : : from ( ConstI32 : : <8 >) ;
unsafe { c . s t o r e i n m e m ( ConstU32 : : <3 >) ; }
ClearModp : : from ( ConstI32 : : <8 > ) . t e s t mem ( ConstU32 : : <3 >) ;

On the SCALE target this is basically a no-op, on the Test target it does this comparison.

x.test_value(y)

Test whether the value held in x is the same as the value held in y. This is the same as x.test() except the value is
compared to y and not the value emulated in the test environment.
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5.4 SecretModp
This is the same as the sint in the underlying SCALE virtual machine.

5.4.1 Conversion of Data

SecretModp::from(a)

This takes an sint integer value a and loads it into a value of type SecretModp. You can also pass in an argument
of a type i64, ClearModp, SecretBit and SecretI64.

l e t sa = SecretModp : : from ( ConstI32 : : <8 >) ;

l e t aa : i 6 4 = 1 0 ;
l e t mut a2=SecretModp : : from ( aa ) ;

l e t c i n t a = ClearModp : : from ( ConstI32 : : <10 >) ;
l e t s i n t a = SecretModp : : from ( c i n t a ) ;

l e t sb = S e c r e t B i t : : from ( f a l s e ) ;
l e t s s b = SecretModp : : from ( sb ) ;

/ / See t h e main SCALE manual f o r t h e s e m a n t i c s o f t h i s c o n v e r s i o n
l e t s i = S e c r e t I 6 4 : : from ( ConstI32 : : <10 >) ;
l e t s s i = SecretModp : : from ( s i ) ;

SecretModp::from_unsigned(a)

The above conversion from SecretI64 to SecretModp is a signed conversion. To get an unsigned conversion you
perform.

l e t s i = S e c r e t I 6 4 : : from ( ConstI32 ::<−10>);
l e t s s i = SecretModp : : f r o m u n s i g n e d ( s i ) ;

5.4.2 IO

The IO class functions for SecretModp datatypes can be access via the following commands:

SecretModp::private_input(p,c)

Loads an SecretModp from the channel c and player p.

l e t a=SecretModp : : p r i v a t e i n p u t ( 3 , 1 0 ) ;

a.private_output(p,c)

Writes an SecretModp to channel c and player p.

l e t v = SecretModp : : from ( ConstI32 : : <1 >) ;
v . p r i v a t e o u t p u t ( 0 , 1 0 ) ;
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5.4.3 Other Operations

SecretModp::randomize()

Produces a (secret) random number in the range [0, . . . , p − 1], where p is the prime underlying the SecretModp
type. This random number is the ‘same’ for all players.

l e t a = SecretModp : : r andomize ( ) ;

SecretModp::get_random_bit()

Produces a (secret) random number in {0, 1}. This random bit is the ‘same’ for all players.

l e t a = SecretModp : : g e t r a n d o m b i t ( ) ;

SecretModp::get_random_square()

Produces a (secret) random number a in the range [0, . . . , p− 1], where p is the prime underlying the SecretModp
type, as well as its square b.

l e t ( a , b ) = SecretModp : : g e t r a n d o m s q u a r e ( ) ;

SecretModp::get_random_triple()

Produces two (secret) random numbers a and b in the range [0, . . . , p − 1], where p is the prime underlying the
SecretModp type, as well as their product c.

l e t ( a , b , c ) = SecretModp : : g e t r a n d o m t r i p l e ( ) ;

5.4.4 Memory Access

a.store_in_mem(x)

To store data into memory location 50 say you need to execute, recalling that memory is accessed by 32 bit values.

unsafe { sa . s t o r e i n m e m ( ConstU32 : : <50 >) ; }
To store to a variable location you use

l e t x : i 6 4 = 5 0 ;
unsafe { sa . s t o r e i n m e m ( x ) ; }

SecretModp::load_from_mem(x)

To load data from memory you do

l e t sa=SecretModp : : load from mem ( ConstU32 : : <50 >) ;
l e t x : i 6 4 = 5 0 ;
l e t sb=SecretModp : : load from mem ( x ) ;

5.4.5 Testing Data

x.test()

In the SCALE target this takes the SecretModp value x, applies a reveal operation to it, and then writes the resulting
ClearModp value into memory.

In the Test target this takes a value stored in the ClearModp memory saved on the last SCALE invocation, and
compares it to x. If the two values are the same it prints the value, and the line number in the rust file where this was
executed. Otherwise it aborts.
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x.test_value(y)

Test whether the value held in x is the same as the value held in y. This is the same as x.test() except the value is
compared to y and not the value emulated in the test environment.
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5.5 SecretBit
This is the same as the sbit in the underlying SCALE virtual machine.

5.5.1 Conversion of Data

SecretBit::from(a)

This takes an integer value a and loads it into a value of type SecretBit.

l e t sa = S e c r e t B i t : : from ( t rue ) ;

You can also load a SecretModp value into the secret bit, although it is up to the programmer to ensure that the
value really is a bit. If it is not a bit, then some information can leak.

l e t cb = SecretModp : : from ( 0 ) ;
l e t sa = S e c r e t B i t : : from ( sa ) ;

5.5.2 Other Operations

SecretBit::randomize()

Produces a (secret) random bit. This random number is the ‘same’ for all players.

l e t a = S e c r e t B i t : : r andomize ( ) ;

5.5.3 Memory Access

There is no SecretBit memory recall!

5.5.4 Testing Data

x.test()

In the SCALE target this takes the SecretBit value x, applies a reveal operation to it, and then writes the resulting
regint value into memory.

In the Test target this takes a value stored in the regint memory saved on the last SCALE invocation, and compares
it to x. If the two values are the same it prints the value, and the line number in the rust file where this was executed.
Otherwise it aborts.

x.test_value(y)

Test whether the value held in x is the same as the value held in y. This is the same as x.test() except the value is
compared to y and not the value emulated in the test environment.
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5.6 Operators

5.6.1 Unary Operators

The following unary operations are allowed on SecretBit, SecretI64.

!

This operation inverts all bits (or just the one bit in the SecretBit case) of its argument. There is no ! operation like
in C on integers. If you want to check whether all bits are zero in Rust, you need to use an equality operation.

5.6.2 Binary Operators

The following operations are allowed between SecretI64 and i64 types:

+ - * /
ˆ & |

The output is of type SecretI64 if any of the two operands are SecretI64s, otherwise the output type is a i64.

The following operations are allowed between SecretModp and ClearModp types:

+ - *

The output is of type SecretModp if any of the two operands are SecretModps, otherwise the output type is a
ClearModp.

The following operations are allowed between SecretModp and ClearModp types:

/

The output is of type SecretModp if the first operand is SecretModps, otherwise the output type is a ClearModp.
Note: The second operand must be a ClearModp or a ConstI32 at present.

The following operations are allowed between ClearModp and i64 types:

% << >> ˆ & |

The operations are performed by lifting the ClearModp values to the integers (in the range [0, . . . , p)) and then
performing the operation over the integers. The output is of type ClearModp

The following operations are allowed between SecretBit types:

ˆ & |

The output is of type SecretBit

The following operations are allowed between i64 types:

== !=
< > <= >=
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The output is of type i64/bool and therefore allows branching on the resulting condition etc.

Between an SecretI64, SecretModp or ClearModp and an immediate operand (an ConstU32) you can execute
shift-left and shift-right operations. These operators also exist if both operands are i64.

<< >>

As in

l e t sb = sa << ConstU32 ::<3>;

For integers, the small example needs to use black box as otherwise the optimizer will optimize the shift and just store
the end result.

l e t a = b l a c k b o x ( 2 ) ;
l e t b = b l a c k b o x ( 1 ) ;
l e t c = a << b
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6 Control Flow
In this section we detail the control flow operations which we support.

6.1 If-then-else
Branching on clear data is possible via the standard rust if-then-else construct. If c is a i64 variable, then to branch on
c = 1 you need to do

i f c == 1 {
. . .

}

In contrast to Mamba, if you need to access data which has been altered within the if clauses you do not need to store
these in memory. Instead you can just use the standard Rust local variables and everything will work as expected. For
example

l e t c0 = b l a c k b o x ( 0 ) ;

/ / T e s t i n g c0 = F a l s e
l e t a = i f c0 == 1 {

ClearModp : : from ( ConstI32 ::<0>)
} e l s e {

ClearModp : : from ( ConstI32 ::<25>)
} ;
/ / u se ‘a ‘ from here on

6.2 While Loops
While loops can also be executed over i64 datatypes, for example

l e t mut cond : i 6 4 = 0 ;
whi le cond ==0 {

. . . Do Something . . .
cond = . . . some c o n d i t i o n . . .

}

If you want to access something inside the loop that can still be used outside the loop afterwards, use local variables
similar to how the cond variable is used.

6.3 For Loops
Again standard rust loops can be executed, for example

l e t mut r e s = 1 ;
f o r i in 2 . . n {

r e s ∗= i ;
}
a=a+ r e s ;

The compiler decides on heuristic optimization rules how and whether to unroll such loops. Whether the loop is
unrolled or not has no effect on the correctness of the loop, but it can have effects on the efficiency of cryptographic
operations.
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6.4 Function Calls
Function calls can either be placed inline (which is really only a hint to the compiler) or they can be performed using
stack-pushing of arguments, call/return and then popping outputs. The former corresponds to the Mamba ‘Python-
Function’ behaviour, whilst the latter corresponds to the Mamba ‘Mamba-Function’ behaviour. However, with Rust if
the compiler decides that the expanded version is too big it will revert to the call/return variant.

In the following foo is an unrolled function, whilst bar is a call/return style function.

#[ i n l i n e ( a lways ) ]
fn foo ( x : i 6 4 ) −> i 6 4 {

l e t mut y =1;
f o r i in 2 . . x

y ∗= i ;
y

}

#[ i n l i n e ( n e v e r ) ]
fn b a r ( x : i 6 4 ) −> i 6 4 {

l e t mut y =1;
f o r i in 2 . . x

y ∗= i ;
y

}

#[ i n l i n e ( n e v e r ) ]
fn main ( ) {

l e t x = foo ( 1 0 ) ;
l e t y = b a r ( 1 0 ) ;
. . .

}

When using call/return the compiler works out all the stack pushing and popping for you. This is why usage of the
stacks by the user might be unsafe, as the compiler really needs direct access to the stacks.

Function calls can also be recursive, unlike function calls in Mamba,

#[ i n l i n e ( n e v e r ) ]
fn f i b o n a c c i ( x : u64 ) −> u64 {

p r i n t ! ( x as i64 , ”\n ” ) ;
match x {

0 => 0 ,
1 | 2 => 1 ,

=> f i b o n a c c i ( x − 1) + f i b o n a c c i ( x − 2)
}

}

Note that the compiler is much less likely to fully inline recursive functions unless it can tell when the recursion will
end.
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7 System Commands
This sections assume you kind of understand the SCALE system and have already programmed a bit in MAMBA.
Eventually we will make it all self-contained. But for now lets assume you are an expert...

7.1 System Control Commands
start_clock(x)

Initializes the timer number x.

stop_clock(x)

Stops the timer number x.

s t a r t c l o c k ( 3 ) ;
. . . .
s t o p c l o c k ( 3 ) ;

require_bit_length(x)

For some reason you program might require a minimum prime length. This command stores the maximum prime
length which you signal, and then emits a single REQBL command at the beginning of the output assembler. Thus the
Rust code

. . .
r e q u i r e b i t l e n g t h ( 1 0 ) ;
. . .
r e q u i r e b i t l e n g t h ( 2 0 ) ;
. . .

creates assembler with a single REQBL 20 as the first instruction.

crash()

Crashes the system.

restart()

Executes the restart machinery.

clear_memory()

Executes a clear memory command.

clear_registers()

Executes a clear registers command.

open_channel(x)

Opens the communication channel to the outside world, returning the appropriate value as an i64.

l e t ans = o p e n c h a n n e l (10 i 3 2 ) ;
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close_channel(x)

Closes the communication channel to the outside world.

c l o s e c h a n n e l (10 i 3 2 ) ;

7.2 Stack Operations
Recall (from the main Scale documentation) there is a stack for all the five basic types i64, SecretI64, ClearModp,
SecretModp and SecretBit. As the main Rust compiler also uses these stacks for function calls you need to be
very careful when using the stacks. Thus you need to enclose them in an unsafe block. The basic methodology to
use the stacks is the same for all five types, so we just give one example here.

l e t one = S e c r e t I 6 4 : : from ( 1 ) ;
l e t two = S e c r e t I 6 4 : : from ( 2 ) ;
l e t t h r e e = S e c r e t I 6 4 : : from ( 3 ) ;
l e t f o u r = S e c r e t I 6 4 : : from ( 4 ) ;

unsafe {
S e c r e t I 6 4 : : push ( one ) ;
S e c r e t I 6 4 : : push ( two ) ;
l e t sp = S e c r e t I 6 4 : : g e t s t a c k p o i n t e r ( ) ;
l e t c = S e c r e t I 6 4 : : peek ( sp − 1 ) ; / / Peek r e l a t i v e t o pos 0
l e t cc = S e c r e t I 6 4 : : p e e k f r o m t o p ( 1 ) ; / / Peek r e l a t i v e t o pos s t a c k p t r
S e c r e t I 6 4 : : poke ( sp , &t h r e e ) ; / / Poke r e l a t i v e t o pos 0
S e c r e t I 6 4 : : p o k e f r o m t o p ( 1 , &f o u r ) ; / / Poke r e l a t i v e t o pos s t a c k p t r
l e t d = S e c r e t I 6 4 : : pop ( ) ;
l e t e = S e c r e t I 6 4 : : pop ( ) ;

}

7.3 Printing
Access to the printing commands is performed via the print! command. Currently, only strings and ClearModp
types can be output in this way.

l e t ca = ClearModp : : from ( 1 ) ;
l e t cb = ClearModp : : from ( 2 ) ;
p r i n t ! ( ” h e l l o ” , ca , ” wor ld ” , cb , ”\n ” ) ;

If you cannot be bothered to add the newline at the end you can also use println!

l e t ca = ClearModp : : from ( 1 ) ;
l e t cb = ClearModp : : from ( 2 ) ;
p r i n t l n ! ( ” h e l l o ” , ca , ” wor ld ” , cb ) ;

7.4 Circuits and Local Functions
For details of how these work in general see the main SCALE manual. If you want to add your own circuits/local
functions see the files

• WebAssembly/scale_std/src/circuits.rs

• WebAssembly/scale_std/src/local_functions.rs

which should be relatively self-explanatory as to how to add new functions to the underlying system.
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7.4.1 Inbuilt Circuits

The inbuilt circuits shipped with SCALE can be called using the following function signatures (the ones associated to
floating point operations can be accessed via the SecretIEEE type).

pub fn AES128 ( key128 : [ S e c r e t I 6 4 ; 2 ] , mess : [ S e c r e t I 6 4 ; 2 ] )
−> [ S e c r e t I 6 4 ; 2 ]

pub fn AES192 ( key128 : [ S e c r e t I 6 4 ; 3 ] , mess : [ S e c r e t I 6 4 ; 2 ] )
−> [ S e c r e t I 6 4 ; 2 ]

pub fn AES256 ( key128 : [ S e c r e t I 6 4 ; 4 ] , mess : [ S e c r e t I 6 4 ; 2 ] )
−> [ S e c r e t I 6 4 ; 2 ]

pub fn SHA3( i s t a t e : Array<Secre t I64 , 25>) −> Array<Secre t I64 , 25>

pub fn SHA256 ( mess : Array<Secre t I64 , 8> , s t a t e : Array<Secre t I64 , 4>)
−> Array<Secre t I64 , 4>

pub fn SHA512 ( mess : Array<Secre t I64 , 16> , s t a t e : Array<Secre t I64 , 8>)
−> Array<Secre t I64 , 8>

pub fn IEEE add ( input : [ S e c r e t I 6 4 ; 2 ] ) −> S e c r e t I 6 4

pub fn IEEE mul ( input : [ S e c r e t I 6 4 ; 2 ] ) −> S e c r e t I 6 4

pub fn IEEE div ( input : [ S e c r e t I 6 4 ; 2 ] ) −> S e c r e t I 6 4

pub fn IEEE eq ( input : [ S e c r e t I 6 4 ; 2 ] ) −> S e c r e t I 6 4

pub fn I E E E f 2 i ( input : S e c r e t I 6 4 ) −> S e c r e t I 6 4

pub fn I E E E i 2 f ( input : S e c r e t I 6 4 ) −> S e c r e t I 6 4

pub fn I E E E s q r t ( input : S e c r e t I 6 4 ) −> S e c r e t I 6 4

pub fn I E E E l t ( input : [ S e c r e t I 6 4 ; 2 ] ) −> S e c r e t I 6 4

For example, to call the AES-128 circuit you would execute:

#[ i n l i n e ( a lways ) ]
fn main ( ) {

l e t z e r o = S e c r e t I 6 4 : : from ( 0 ) ;
l e t one = S e c r e t I 6 4 : : from ( 1 ) ;
l e t mone = S e c r e t I 6 4 : : from (−1) ;

l e t key128 : [ S e c r e t I 6 4 ; 2 ] = [ zero , mone ] ;
l e t mess : [ S e c r e t I 6 4 ; 2 ] = [ mone , one ] ;

l e t c i p h = AES128 ( key128 , mess ) ;
}
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7.4.2 Inbuilt Local Functions

The calling of Local Functions works in much the same way. If you look at the implementation of matrix multiplication
of two matrices1 of type ClearModp in WebAssembly/scale_std/src/local_functions.rs you will
find the implementation:

c o n s t C MULT C : u32 = 0 ;

#[ i n l i n e ( a lways ) ]
#[ a l l o w ( n o n s n a k e c a s e ) ]
pub fn Matrix Mul CC<c o n s t N: u64 , c o n s t L : u64 , c o n s t M: u64>

( A: &Ma t r i x ::<ClearModp , N, L> ,
B : &Ma t r i x ::<ClearModp , L , M>

) −> Ma t r ix ::<ClearModp , N, M> {
l e t ( co l , row , C)= unsafe { e x e c u t e l o c a l f u n c t i o n ! (C MULT C(

N as i64 ,
L as i64 ,
∗A,
L as i64 ,
M as i64 ,
∗B

) −>
i64 ,
i64 ,
Ma t r i x ::<ClearModp , N, M>

) } ;
i f row ! = (N as i 6 4 ) | | c o l ! = ( M as i 6 4 ) {

c r a s h ( ) ;
}
C

}

We explain this now, as you can replicate this to add your own Local Functions:

• The ‘unsafe’ part calls the Local Function with index zero.

• The arguments are pushed onto the stack in the order N , L, A, L, M and B.

• The operation is then called, with the results popped off the stack in the order col, row and C.

• After some doubly checking the matrix C is returned to the caller.

The caller code is given by

l e t mut A = M at r i x : :<ClearModp , N, L> : : u n i n i t i a l i z e d ( ) ;
l e t mut B = Ma t r i x ::<ClearModp , L , M> : : u n i n i t i a l i z e d ( ) ;

. . . S e t d a t a in A and B . . .

l e t C = Matrix Mul CC (&A, &B ) ;

Currently there are four Local Functions defined, with the signatures (the ones in the main SCALE manual associated
to floating point operations can be accessed via the ClearIEEE type directly).

1See later for the matrix types
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pub fn Matrix Mul CC<c o n s t N: u64 , c o n s t L : u64 , c o n s t M: u64>
( A: &Ma t r i x ::<ClearModp , N, L> ,

B : &Ma t r i x ::<ClearModp , L , M>
) −> Ma t r ix ::<ClearModp , N, M>

pub fn Matrix Mul SC<c o n s t N: u64 , c o n s t L : u64 , c o n s t M: u64>
( A: &Ma t r i x ::<SecretModp , N, L> ,

B : &Ma t r i x ::<ClearModp , L , M>
) −> Ma t r ix ::<SecretModp , N, M>

pub fn Matrix Mul CS<c o n s t N: u64 , c o n s t L : u64 , c o n s t M: u64>
( A: &Ma t r i x ::<ClearModp , N, L> ,

B : &Ma t r i x ::<SecretModp , L , M>
) −> Ma t r ix ::<SecretModp , N, M>

pub fn Gauss El im<c o n s t N: u64 , c o n s t M: u64>
( A: &Ma t r i x ::<ClearModp , N, M> ,
) −> Ma t r ix ::<ClearModp , N, M>
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8 Standard Library

8.1 Boxes
A box is essentially an array of size one. It is a ‘safe’ way for users to write/read from the SCALE memory one
element at a time. To load the standard library version of a Box use

use s c a l e s t d : : heap : : Box ;

As it is tied to the SCALE memory it only comes in the types i64, SecretI64, ClearModp and SecretModp.

Box::uninitialized()

To initialise a box with no pre-defined value use

l e t mut a= Box<Secre t I64 > : : u n i n i t i a l i z e d ( ) ;

a.set(x)

Does the obvious.

a.get()

Again does the obvious.

8.2 Arrays
This data type is implemented using the SCALE memory. It is currently available for the following types; i64,
SecretI64, ClearModp, SecretModp, ClearFixed<K,F>, SecretFixed<K,F>, ClearFloat<V,P>,
SecretFloat<V,P>, ClearIEEE and SecretIEEE. You can always use simple arrays of the form

l e t key128 : [ S e c r e t I 6 4 ; 2 ] = [ zero , none ] ;

as in the earlier AES example. But these will not compile as soon as the size becomes too large. The simple arrays
will compile to registers, and thus be more efficient than arrays stored in memory. But arrays stores in memory are
more flexible. To load the standard library version of Arrays use

use s c a l e s t d : : a r r a y : : Array ;

Array::uninitialized()

To initialise an array with no pre-defined values use

l e t mut a= Array<Secre t I64 , 25 > : : u n i n i t i a l i z e d ( ) ;

a.fill(x)

Fills an array, used with initialization

l e t a : Array<Secre t I64 , 25> = Array : : f i l l ( z e r o ) ;

a.set(i,x)

Does the obvious, but has no bound checks, i.e. you can access the 50th element of a 25 element array.

a.get(i)

Get the reference of an element from the array by checking we do not make any memory overflow
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a.get_unchecked(i)

Get the reference of an element from the array without checking we do not make any memory overflow

a.get_mut(i)

Get the mutable reference of an element from the array by checking we do not make any memory overflow.

a.get_mut_unchecked(i)

Get the mutable reference of an element from the array without checking we do not make any memory overflow

drop(a)

Deletes the array from memory.

a.iter()

Iterator over an Array,

f o r ( i , v a l ) in a . i t e r ( ) . enumera t e ( ) {
. . . .

}

To iterate backwards use

f o r ( i , v a l ) in a . i t e r ( ) . r e v ( ) . enumera t e ( ) {
. . . .

}

For more details on using iterators see https://doc.rust-lang.org/std/iter/trait.Iterator.html.

a.addr(i)

This returns the address in memory of the i-th element in the array.

a.reverse()

Returns the same array, but with the elements in the reverse order, i.e. a[i] = a[`− 1− i] for i = 0, . . . , `− 1.

a.reveal()

For the secret types this creates a non-secret version, as in.

l e t c i n t a r r a y = s i n t a r r a y . r e v e a l ( ) ;

a.slice(range)

Converts (part of) an array to a slice, of which the length is only known at runtime.

l e t a s l i c e : S l i c e <Secre t I64> = a . s l i c e ( 3 . . ) ;

8.2.1 Stack Operations on Arrays

One can also apply the stack operations on an array, which applies to all the elements in the array. Note the pop
operation works in reverse, so that pushing and then popping gives the same array. The stack read operations (pop,
peek etc) will pop and peek the entire array, so you need to ensure the stack really has that many elements on it; i.e.
no access is performed outside the stack, otherwise a runtime crash will occur.
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push(x), pop()

peek(i), poke(i, x)

peek_from_top(i), poke_from_top(i, x)

These are called using the following convention

unsafe { Array : : push (&a ) }
l e t a = unsafe { Array ::< Secre t I64 , 25 > : : pop ( ) } ;

8.3 Slices
This data type is equal to Arrays, the only difference being that the length of a slice is not known at compile
time. Just like Arrays, this data type is implemented using the SCALE memory. It is currently available for the
following types i64, SecretI64, ClearModp, SecretModp, ClearFixed<K,F>, SecretFixed<K,F>,
ClearFloat<V,P>, SecretFloat<V,P>, ClearIEEE and SecretIEEE data types. To load the standard
library version of slices use

use s c a l e s t d : : s l i c e : : S l i c e ;

Slice::uninitialized()

To initialise a slice with no pre-defined values use

l e t mut a= S l i c e <Secre t I64 > : : u n i n i t i a l i z e d ( ) ;

s.set(i,x)

Does the obvious.

a.get(i)

Get the reference of an element from the slice by checking we do not make any memory overflow

a.get_unchecked(i)

Get the reference of an element from the slice without checking we do not make any memory overflow

a.get_mut(i)

Get the mutable reference of an element from the slice by checking we do not make any memory overflow.

a.get_mut_unchecked(i)

Get the mutable reference of an element from the slice without checking we do not make any memory overflow

drop(a)

Deletes the slice from memory.
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s.iter()

Iterator over an Slice,

f o r ( i , v a l ) in s . i t e r ( ) . enumera t e ( ) {
. . . .

}

To iterate backwards use

f o r ( i , v a l ) in a . i t e r ( ) . r e v ( ) . enumera t e ( ) {
. . . .

}

s.addr(i)

This returns the address in memory of the i-th element in the slice.

s.reverse()

Returns the same slice, but with the elements in the reverse order, i.e. s[i] = s[`− 1− i] for i = 0, . . . , `− 1.

s.reveal()

For the secret types this creates a non-secret version, as in.

l e t c i n t s l i c e = s i n t s l i c e . r e v e a l ( ) ;

s.slice(range)

Returns part of the original slice.

l e t s s l i c e : S l i c e <Secre t I64> = s . s l i c e ( 3 . . ) ;

s.len()

Returns the length of the slice as a u64-number.

l e t l e n g t h : u64 = s . l e n ( ) ;

8.4 Arithmetic on Arrays and Slices
These operations only apply to special types of Arrays or Slices.

8.4.1 Private IO

Since private IO requires rounds of communication we provide helper functions for Arrays and Slices which use a
constant number of rounds, irrespective of the size of the Array or Slice.

Array<SecretModp,N>::private_input(p,c)

a.private_output(p,c)
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Slice<SecretModp>::private_input(N, p,c)

s.private_output(p,c)

These are all called in the following manner

l e t a : Array<SecretModp , 5>=Array : : p r i v a t e i n p u t ( 1 , 1 0 ) ;
a . p r i v a t e o u t p u t ( 2 , 1 0 ) ;

l e t b : S l i c e <SecretModp>=S l i c e : : p r i v a t e i n p u t ( 6 , 1 , 1 0 ) ;
b . p r i v a t e o u t p u t ( 2 , 1 0 ) ;

8.4.2 Addition/Subtraction/Multiplication

Vectorized addition, subtraction, multiplication, division and modular-remainder of Arrays and Slices of type ClearModp
and SecretModp are implemented via either an operator notation, or a member function notation. These are not
implemented for secret-secret multiplication and the division/modular-remainder are only implemented for clear-clear
operations. The operator variants are often slower, as they can require a clone before calling (depending on the
usage of the arguments in other parts of the code). The member function variants never require a clone. We present an
example for Arrays, an equivalent syntax applies to Slices,

c o n s t N: u64 =200;
l e t mut c a a r r : Array<ClearModp , N> = Array : : u n i n i t i a l i z e d ( ) ;
l e t mut c b a r r : Array<ClearModp , N> = Array : : u n i n i t i a l i z e d ( ) ;
l e t mut s a a r r : Array<SecretModp , N> = Array : : u n i n i t i a l i z e d ( ) ;
l e t mut s b a r r : Array<SecretModp , N> = Array : : u n i n i t i a l i z e d ( ) ;

. . .

/ / Opera tor n o t a t i o n ( V s low )
l e t a a d d c c = c a a r r . c l o n e ( ) + c b a r r . c l o n e ( ) ;
l e t a a d d c s = c a a r r . c l o n e ( ) + s b a r r . c l o n e ( ) ;
l e t a a d d s c = s a a r r . c l o n e ( ) + c b a r r . c l o n e ( ) ;
l e t a a d d s s = s a a r r . c l o n e ( ) + s b a r r . c l o n e ( ) ;
l e t a s u b c c = c a a r r . c l o n e ( ) − c b a r r . c l o n e ( ) ;
l e t a s u b c s = c a a r r . c l o n e ( ) − s b a r r . c l o n e ( ) ;
l e t a s u b s c = s a a r r . c l o n e ( ) − c b a r r . c l o n e ( ) ;
l e t a s u b s s = s a a r r . c l o n e ( ) − s b a r r . c l o n e ( ) ;
l e t a m u l c c = c a a r r . c l o n e ( ) ∗ c b a r r . c l o n e ( ) ;
l e t a m u l c s = c a a r r . c l o n e ( ) ∗ s b a r r . c l o n e ( ) ;
l e t a m u l s c = s a a r r . c l o n e ( ) ∗ c b a r r . c l o n e ( ) ;
l e t a d i v c c = c a a r r . c l o n e ( ) / c b a r r . c l o n e ( ) ;
l e t a mod cc = c a a r r . c l o n e ( ) % c b a r r . c l o n e ( ) ;

/ / Opera tor n o t a t i o n ( s low )
l e t a a d d c c = &c a a r r + c b a r r . c l o n e ( ) ;
. . .
l e t a mod cc = &c a a r r % c b a r r . c l o n e ( ) ;
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/ / Opera tor n o t a t i o n ( s low )
l e t a a d d c c = c a a r r . c l o n e ( ) + &c b a r r ;
. . .
l e t a mod cc = c a a r r . c l o n e ( ) % &c b a r r ;

/ / Opera tor n o t a t i o n ( f a s t e s t )
l e t a a d d c c = &c a a r r + &c b a r r ;
. . .
l e t a mod cc = &c a a r r % &c b a r r ;

/ / Member f u n c t i o n n o t a t i o n ( f a s t e s t )
l e t a a d d c c t = c a a r r . a d d c l e a r (& c b a r r ) ;
l e t a a d d c s t = c a a r r . a d d s e c r e t (& s b a r r ) ;
l e t a a d d s c t = s a a r r . a d d c l e a r (& c b a r r ) ;
l e t a a d d s s t = s a a r r . a d d s e c r e t (& s b a r r ) ;
l e t a s u b c c t = c a a r r . s u b c l e a r (& c b a r r ) ;
l e t a s u b c s t = c a a r r . s u b s e c r e t (& s b a r r ) ;
l e t a s u b s c t = s a a r r . s u b c l e a r (& c b a r r ) ;
l e t a s u b s s t = s a a r r . s u b s e c r e t (& s b a r r ) ;
l e t a m u l c c t = c a a r r . m u l c l e a r (& c b a r r ) ;
l e t a m u l c s t = c a a r r . m u l s e c r e t (& s b a r r ) ;
l e t a m u l s c t = s a a r r . m u l c l e a r (& c b a r r ) ;
l e t a d i v c c t = c a a r r . d i v c l e a r (& c b a r r ) ;
l e t a m o d c c t = c a a r r . m o d c l e a r (& c b a r r ) ;

The slice variants do not check whether the two source arrays have the same number of elements, the size is always
taken to be that of *this.

8.4.3 Advanced Arithmetic on Arrays and Slices

a.evaluate(c)

Given an array or slice a of length ` of type ClearModp or SecretModp this evaluates the polynomial
∑`−1

i=0 ai ·ci
for the ClearModp value c.

Array<ClearModp,N>::bit_decomposition_ClearModp(c)

Slice<ClearModp>::bit_decomposition_ClearModp(c, N)

Array<i64,N>::bit_decomposition_i64(v)

Slice<i64>::bit_decomposition_i64(v, N)

Given a ClearModp value c or an i64 value v, these functions compute the bit-decomposition of c (resp. v) upto
the N -th bit position. Returning the result as an Array or Slice.
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Array<ClearModp,N>::bit_decomposition_ClearModp_Signed(c)

Slice<ClearModp>::bit_decomposition_ClearModp_Signed(c, N)

The same but assumes the value c is signed, i.e. if p > 2 then we bit-decompose the negative value c− p.

8.5 Matrices
Again this data type is implemented using the SCALE memory. It is thus only available for i64, SecretI64,
ClearModp and SecretModp data types. To load the standard library version of Matrices use

use s c a l e s t d : : m a t r i x : : Ma t r i x ;

There are a similar set of functions as for the Array type.

Matrix::unitialized()

To initialise a matrix with no pre-defined values, with fives rows and four columns, use

l e t mut a= Matr ix<Secre t I64 , 5 , 4 > : : u n i t i a l i z e d ( ) ;

a.fill(x)

Fills an array, used with initialization

l e t a : Matr ix<Secre t I64 , 5 , 4> = M at r i x : : f i l l ( z e r o ) ;

a.set(i,j,x)

Does the obvious.

a.get(i,j)

Again does the obvious

a.get_row(i)

Does the obvious, returning the result as an Array.

a.get_column(i)

Again does the obvious

a.iter()

Iterator over a Matrix,

f o r ( i , v a l ) in a . i t e r ( ) . enumera t e ( ) {
. . . .

}
The iterator works in the order a0,0, a0,1, a0,2, . . . , a0,c−1, a1,0, a1,1, . . . , ar−1,c−1.
To iterate backwards use

f o r ( i , v a l ) in a . i t e r ( ) . r e v ( ) . enumera t e ( ) {
. . . .

}
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a.reveal()

For the secret types this creates a non-secret version, as in.

l e t c i n t m a t r i x = s i n t m a t r i x . r e v e a l ( ) ;

8.5.1 Stack Operations on Matrices

One can also apply the stack operations on a matrix, which applies to all the elements in the matrix. The push operation
works in the same order as the above iterator, with the pop operations working in reverse. The stack read operations
(pop, peek etc) will pop and peek the entire matrix, so you need to ensure the stack really has that many elements on
it; i.e. no access is performed outside the stack, otherwise a runtime crash will occur.

push(x), pop()

peek(i), poke(i, x)

peek_from_top(i), poke_from_top(i, x)

These are called using the following convention

unsafe { Ma t r ix : : push (&a ) }
l e t a = unsafe { Ma t r ix ::< Secre t I64 , 5 , 4 > : : pop ( ) } ;

8.6 ClearIEEE
This class gives direct access to the IEEE-754 compliant implementation of floating point numbers in SCALE. The
operations on ClearIEEE values are usually much faster than processing using ClearFixed values, as the basic
arithmetic is implemented by passing the operation (via a local function) to the SCALE engine; where it is imple-
mented in C++. The usage is demonstrated in the example below:

use s c a l e s t d : : i e e e : : ∗ ;
#[ i n l i n e ( a lways ) ]
#[ s c a l e : : main (KAPPA = 40) ]
fn main ( ) {

l e t c= ClearIEEE : : from ( 3 . 1 4 1 5 9 2 ) ;
p r i n t ! ( c , ”\n ” ) ;

}

ClearIEEE::from(x)

You can convert an i64, a ClearFixed<K,F> or a constant f64 to a ClearIEEE as follows:

l e t c= ClearIEEE : : from ( 3 . 1 4 1 5 9 2 ) ;

l e t i : i 6 4 = 1677216;
l e t f i =ClearIEEE : : from ( i ) ;

You can also convert a ClearIEEE to an i64, which rounds the floating point value to a 64-bit integer (if possible).

l e t i c = i 6 4 : : from ( c ) ;
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a.rep()

The internal representation as an i64 can be obtained by the rep() function.

a.set(x)

One can set the internal representation to a i64 value using the set() function.

ClearIEEE::NaN()

Returns a representation of IEEE NaN.

ClearIEEE::randomize()

Produces a random value in the range [0, . . . , 1). This random number is the ‘same’ for all players.

l e t a = ClearIEEE : : randomize ( ) ;

8.6.1 Comparisons

The ClearIEEE type implements the Eq, PartialEq and PartialOrd traits. Therefore you can apply normal
comparison operators to ClearIEEE types as in...

fn t e s t a p p r o x ( a : ClearIEEE , v a l : ClearIEEE ) −> i 6 4
{

l e t l ower = v a l − ClearIEEE : : from ( 0 . 0 0 0 0 1 ) ;
l e t upper = v a l + ClearIEEE : : from ( 0 . 0 0 0 0 1 ) ;
l e t ok = ( a>l ower ) | ( a<upper ) ;
ok as i 6 4

}

To aid with generic programming the following member functions are also implemented, which output a value of type
i64,

a.gt(x), a.ge(x), a.lt(x), a.le(x), a.gt(x), a.eq(x), a.ne(x)

a.gtz(), a.gez(), a.ltz(), a.lez(), a.gtz(), a.eqz(), a.nez(x)

8.7 SecretIEEE
This class gives direct access to the IEEE-754 compliant implementation of floating point numbers in SCALE. Recall
these are implemented using evaluations of binary circuits, so are not as fast as the sfloat types implemented in
MAMBA (which are not currently available in the Rust interface, but we hope to fix this soon). The SecretFixed
types is more efficient than the SecretIEEE type and should usually be preferred. The benefit of the SecretIEEE
type is that it is more expressive in terms of the numbers ranges it can hold; but this comes at the drawback of
significant reduced performance.

SecretIEEE::from(x)

You can convert a SecretI64, a ClearIEEE or a constant f64to a SecretIEEE as follows:
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l e t c= ClearIEEE : : from ( 3 . 1 4 1 5 9 2 ) ;
l e t sc = Sec re t IEEE : : from ( c ) ;

l e t i : i 6 4 = 1677216;
l e t s i = S e c r e t I 6 4 : : from ( i ) ;
l e t s f i = Sec re t IEEE : : from ( s i ) ;

You can also convert a SecretIEEE to a SecretI64, which rounds the floating point value to a 64-bit integer (if
possible).

l e t i c = S e c r e t I 6 4 : : from ( sc ) ;

a.rep()

The internal representation as a SecretI64 can be obtained by the rep() function.

a.set(x)

One can set the internal representation to a SecretI64 value using the set() function.

s.reveal()

For the SecretIIEEE type this creates a ClearIEEE version, as in.

l e t c i = s i . r e v e a l ( ) ;

SecretIEEE::NaN()

Returns a representation of IEEE NaN.

SecretIEEE::randomize()

Produces a (secret) random value in the range [0, . . . , 1). This random number is the ‘same’ for all players.

l e t a = Sec re t IEEE : : randomize ( ) ;

8.7.1 Comparisons

The following ‘operators’ can be applied between two SecretIEEE values The output is a SecretBit value. As the
result of the operator cannot be used in a conditional branch, we use the member function notation for such ‘operators’,
as opposed to the operator notation. Thus syntactically the programmer is less likely to make a mistake.

a.gt(x), a.ge(x), a.lt(x), a.le(x), a.gt(x), a.eq(x), a.ne(x)

The following give variants which compare just to zero.

a.gtz(), a.gez(), a.ltz(), a.lez(), a.gtz(), a.eqz(), a.nez(x)

8.8 Arithmetic of ClearIEEE and SecretIEEE
The following operations are allowed between two elements of type SecretIEEE and ClearIEEE.

+ - * /

Clear and secret values can be combined to result in a secret value.
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8.9 Bit Operations
There are a number of routines to access and process Slices of bits, which are represented in either ClearModp or
SecretModp format.

BitAdd(Slice<U> A, Slice<V> B)

This produces a slice of SecretModp values corresponding to the summation of the bits in A and B. The two input
slices are assumed to be of the same length k, and the output slice is of length k + 1. The type of U and V can be
either SecretModp or ClearModp, bit not both ClearModp.

/ / 7 + 5 = 12
l e t mut ca : S l i c e <ClearModp> = S l i c e : : u n i n i t i a l i z e d ( 3 ) ;
ca . s e t (0 ,& ClearModp : : from ( 1 ) ) ;
ca . s e t (1 ,& ClearModp : : from ( 1 ) ) ;
ca . s e t (2 ,& ClearModp : : from ( 1 ) ) ;

l e t mut sb : S l i c e <SecretModp> = S l i c e : : u n i n i t i a l i z e d ( 3 ) ;
sb . s e t (0 ,& SecretModp : : from ( 1 ) ) ;
sb . s e t (1 ,& SecretModp : : from ( 0 ) ) ;
sb . s e t (2 ,& SecretModp : : from ( 1 ) ) ;

l e t v c a s b = BitAdd(&ca ,& sb ) ;

BitIncrement(Array<SecretModp, K> A)

On input of an array of bits, represented as SecretModp values, this function returns the slice of SecretModp
values consting of the incremeneted integer value.

l e t mut sa : Array<SecretModp , 3> = Array : : u n i n i t i a l i z e d ( ) ;
sa . s e t (0 ,& SecretModp : : from ( 1 ) ) ;
sa . s e t (1 ,& SecretModp : : from ( 1 ) ) ;
sa . s e t (2 ,& SecretModp : : from ( 1 ) ) ;
l e t v i n c s a = B i t I n c r e m e n t (& sa ) ;

BitLT(a, B, K)

This takes a ClearModp value B and an Slice of SecretModp values A, representing bits (of size at least K). It
computes the SecretModp value representing the conditional a <

∑K−1
i=0 bi · 2i.

l e t mut s a a : S l i c e <SecretModp> = S l i c e : : u n i n i t i a l i z e d ( 3 ) ;
s a a . s e t (0 ,& SecretModp : : from ( 1 ) ) ;
s a a . s e t (1 ,& SecretModp : : from ( 0 ) ) ;
s a a . s e t (2 ,& SecretModp : : from ( 1 ) ) ;

l e t f o u r = ClearModp : : from ( 4 ) ;
l e t s i x = ClearModp : : from ( 6 ) ;
l e t cmp four = BitLT ( fou r , saa , 3 ) ;
l e t cmp s ix = BitLT ( s i x , saa , 3 ) ;

BitLTFull(Slice<U> A, Slice<V> B))

The two input slices are assumed to be of the same length K, and the output is a single SecretModp value represent-
ing the conditional

∑K−1
i=0 ai ·2i <

∑K−1
i=0 bi ·2i. The type of U and V can be either SecretModp or ClearModp,

bit not both ClearModp. This routine does not utilize any statistical security gap, thus K can be the size of log2 p.
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l e t mut ca : S l i c e <ClearModp> = S l i c e : : u n i n i t i a l i z e d ( 3 ) ;
ca . s e t (0 ,& ClearModp : : from ( 1 ) ) ;
ca . s e t (1 ,& ClearModp : : from ( 1 ) ) ;
ca . s e t (2 ,& ClearModp : : from ( 1 ) ) ;

l e t mut sb : S l i c e <SecretModp> = S l i c e : : u n i n i t i a l i z e d ( 3 ) ;
sb . s e t (0 ,& SecretModp : : from ( 1 ) ) ;
sb . s e t (1 ,& SecretModp : : from ( 0 ) ) ;
sb . s e t (2 ,& SecretModp : : from ( 1 ) ) ;

l e t cmp a1 = B i t L T F u l l (&ca , &sb ) ;

BitDec::<K,M,KAPPA>(s)

Given a (signed) SecretModp value which lies in Z〈k〉 this produces the first M bits of the bit-decomposition using
statistical security parameter KAPPA. The output is given as a slice of SecretModp values, each of which represents
a bit.

l e t s s 1 = SecretModp : : from ( 5 ) ;
l e t s s 2 = SecretModp : : from (−5) ;
l e t v1 = Bi tDec : : <10 ,5 ,40 > ( s s 1 ) ;
l e t v2 = Bi tDec : : <10 ,5 ,40 > ( s s 2 ) ;

bitdec::<KAPPA>(s, k)

Same but now k can be a run time variable and not a compile time constant, and we use K = M = k.

l e t s s 1 = SecretModp : : from ( 5 ) ;
l e t s s 2 = SecretModp : : from (−5) ;
l e t v1 = b i t d e c ::<40>( ss1 , 1 0 ) ;
l e t v2 = b i t d e c ::<40>( ss2 , 1 0 ) ;

BitDecFull(x)

Given a SecretModp value this produces the bit-decomposition into a slice of dimension log2 p. The value x can
be in the range [0, . . . , p) and no usage is made of any statistical security parameter. The output is given as a slice of
SecretModp values, each of which represents a bit.

l e t s s 1 = SecretModp : : from ( 5 ) ;
l e t s s 2 = SecretModp : : from (−5) ;
l e t v1 = B i t D e c F u l l ( s s 1 ) ;
l e t v2 = B i t D e c F u l l ( s s 2 ) ;

8.10 ClearInteger

We define Z〈k〉 as the set of integers {x ∈ Z : −2k−1 ≤ x ≤ 2k−1 − 1}, which we embed into Fp via the map
x 7→ x (mod p). In MAMBA the user had to manually think of elements in Fp as representing values in Z〈k〉, and
manually keep track of their sizes for all the ‘advanced’ integer operations. This was efficient, but prone to errors and
misunderstandings. In Rust we have a seperate type to represent elements in Z〈k〉, both in clear and secret form. This
is strongly typed in the sense that a ClearInteger<3> is a different type from a ClearInteger<4>.

This class enables one to load and print clear integers, and acts mainly as a helper class for the SecretInteger
class below. The usage is demonstrated in the example below:
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use s c a l e s t d : : i n t e g e r : : ∗ ;
#[ i n l i n e ( a lways ) ]
#[ s c a l e : : main (KAPPA = 40) ]
fn main ( ) {

l e t c : C l e a r I n t e g e r <3>= C l e a r I n t e g e r : : from (2 as i 6 4 ) ;
p r i n t ! ( c , ”\n ” ) ;

}

ClearInteger::from(x)

You can convert a ClearModp or a i64 to a ClearInteger<K> as follows:

l e t c = ClearModp : : from ( 2 ) ;
l e t c i : C l e a r I n t e g e r <3>= C l e a r I n t e g e r : : from ( c ) ;
l e t c i 1 : C l e a r I n t e g e r <3>= C l e a r I n t e g e r : : from (2 as i 6 4 ) ;

a.recast()

A value of one size can be recast to another using the recast member function. It is assumed the user knows what
they are doing here and that such recasting will not necessarily result in a valid representation being created.

l e t c = ClearModp : : from ( 2 ) ;
l e t c i : C l e a r I n t e g e r <3>= C l e a r I n t e g e r : : from ( c ) ;
l e t c i 1 : C l e a r I n t e g e r <5>= unsafe { a . r e c a s t ( ) } ;

a.rep()

Returns the internal representation as a ClearModp value.

a.set(v)

Sets the internal representation to be the ClearModp value v.

a.Trunc(M,S)

Implements the deterministic trunction operation of rounding a/2M . When S = true the value a is assumed to lie in
Z〈k〉, but when S = false the value a is assumed to lie in [0, . . . , 2K−1).

l e t a : C l e a r I n t e g e r ::<6> = C l e a r I n t e g e r : : from ( 2 3 ) ;
l e t b = a . Trunc ( 3 , t rue ) ;

a.Mod2m(M,S)

This computes the value of a modulo 2M . When S = true the value a is assumed to lie in Z〈k〉, but when S = false
the value a is assumed to lie in [0, . . . , 2K−1). Mathematically this computes the expression(

a+ S · 2K−1
)

(mod 2)M .

Implicitly this assumes that M < K.

l e t a : C l e a r I n t e g e r <10> = C l e a r I n t e g e r : : from (−24) ;
l e t b = a . Mod2m( 5 , t rue ) ;
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a.Mod2(S)

As above but takes M = 1.

ClearInteger::randomize()

Produces a random value in Z〈k〉. This random number is the ‘same’ for all players.

l e t a : C l e a r I n t e g e r <20> = C l e a r I n t e g e r : : r andomize ( ) ;

8.10.1 Comparisons

The following ‘operators’ can be applied between two ClearInteger<K> values,the output being a ClearModp
value. As the result of the operator cannot be used in a conditional branch, we use the member function notation
for such ‘operators’, as opposed to the operator notation. Thus syntactically the programmer is less likely to make a
mistake.

a.gt(x), a.ge(x), a.lt(x), a.le(x), a.gt(x), a.eq(x), a.ne(x)

The following give variants which compare just to zero.

a.gtz(), a.gez(), a.ltz(), a.lez(), a.gtz(), a.eqz(), a.nez(x)

8.11 SecretInteger
Many operations on SecretIntegers make use of the statistical security gap KAPPA defined in the pre-amble.

SecretInteger::from(x)

You can convert a ClearModp or a ClearInteger<K> to a SecretInteger<K> as follows:

l e t c = ClearModp : : from ( 2 ) ;
l e t c i : C l e a r I n t e g e r <3>= C l e a r I n t e g e r : : from ( c ) ;
l e t s i 1 : S e c r e t I n t e g e r <3>= S e c r e t I n t e g e r : : from ( c ) ;
l e t s i 2 : S e c r e t I n t e g e r <3>= S e c r e t I n t e g e r : : from ( c i ) ;

a.recast()

A value of one size can be recast to another using the recast member function. It is assumed the user knows what
they are doing here and that such recasting will not necessarily result in a valid representation being created.

l e t c = ClearModp : : from ( 2 ) ;
l e t s i : S e c r e t I n t e g e r <3>= S e c r e t I n t e g e r : : from ( c ) ;
l e t s i 1 : S e c r e t I n t e g e r <5>= unsafe { a . r e c a s t ( ) } ;

a.rep()

Returns the internal representation as a SecretModp value.

a.set(v)

Sets the internal representation to be the SecretModp value v.
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a.reveal()

For the SecretInteger typs this creates a ClearInteger version, as in.

l e t c i = s i . r e v e a l ( ) ;

a.Mod2m(M,S)

This computes the value of a modulo 2M . When S = true the value a is assumed to lie in Z〈k〉, but when S = false
the value a is assumed to lie in [0, . . . , 2K−1). Mathematically this computes the expression(

a+ S · 2K−1
)

(mod 2)M .

Implicitly this assumes that M < K.

l e t a : S e c r e t I n t e g e r <10> = S e c r e t I n t e g e r : : from (−24) ;
l e t b = a . Mod2m( 5 , t rue ) ;

a.Mod2(S)

As above but takes M = 1.

Pow2::<K,KAPPA>(b)

If b is a SecretModp in the range [0, . . . ,K) this computes the value 2b as a SecretInteger<K>

l e t b = SecretModp : : from ( 2 8 ) ;
l e t d = Pow2::<32 ,40>( b ) ;

a.TruncPr(M,S)

Implements the probabilistic trunction operation of rounding a/2M . When S = true the value a is assumed to lie in
Z〈k〉, but when S = false the value a is assumed to lie in [0, . . . , 2K−1).

l e t a : S e c r e t I n t e g e r ::<6> = S e c r e t I n t e g e r : : from ( 2 3 ) ;
l e t b = a . TruncPr ( 3 , t rue ) ;

a.Trunc(M,S)

Implements the deterministic trunction operation of rounding a/2M . When S = true the value a is assumed to lie in
Z〈k〉, but when S = false the value a is assumed to lie in [0, . . . , 2K−1).

l e t a : S e c r e t I n t e g e r ::<6> = S e c r e t I n t e g e r : : from ( 2 3 ) ;
l e t b = a . Trunc ( 3 , t rue ) ;

a.TruncRoundNearest(M,S)

Implements the deterministic rounding to the nearest integer operation of rounding da/2Mc. When S = true the value
a is assumed to lie in Z〈k〉, but when S = false the value a is assumed to lie in [0, . . . , 2K−1).

l e t a : S e c r e t I n t e g e r ::<6> = S e c r e t I n t e g e r : : from ( 2 3 ) ;
l e t b = a . TruncRoundNeares t ( 3 , t rue ) ;
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a.ObliviousTrunc(m)

Implements Trunc operation where m is a SecretModp value which lies in the range [0, . . . ,K). The output is an
Array of three SecretModp values. The first element is t = ba/2mc, the second is a− 2m · t and the third element
is 2m.

l e t a = SecretModp : : from ( 2 3 ) ;
l e t b : S e c r e t I n t e g e r ::<6> = S e c r e t I n t e g e r : : from ( a ) ;
l e t m = SecretModp : : from ( 3 ) ;
l e t c = b . O b l i v i o u s T r u n c (m) ;

SecretInteger::randomize()

Produces a (secret) random value in Z〈k〉. This random number is the ‘same’ for all players.

l e t a : S e c r e t I n t e g e r <20> = S e c r e t I n t e g e r : : r andomize ( ) ;

8.11.1 Comparisons

The following ‘operators’ can be applied between two SecretInteger<K> values,the output being a SecretModp
value. As the result of the operator cannot be used in a conditional branch, we use the member function notation for
such ‘operators’, as opposed to the operator notation. Thus syntactically the programmer is less likely to make a
mistake.

a.gt(x), a.ge(x), a.lt(x), a.le(x), a.gt(x), a.eq(x), a.ne(x)

The following give variants which compare just to zero.

a.gtz(), a.gez(), a.ltz(), a.lez(), a.gtz(), a.eqz(), a.nez(x)

8.12 Arithmetic of ClearInteger and SecretInteger
Since a reduction operation (to ensure the value really lies in Z〈k〉) is expensive we give function and operator versions
of arithmetic. Warning: In the member function versions no reduction occurs, thus these can be used when the user
knows that no wrap around will occur. We thus mark them as unsafe. The operator versions allow for ease of use, and
guarantee correctness, but will be slower than the function versions.

The operators unarray minus (i.e. negation), addition, subtraction and multiplication are supported. If a clear and
secret value are combined then the result is secret. The equivalent function versions for arithmetic have the following
signatures. Note all are unsafe bar the negate function.

C l e a r I n t e g e r <K> : : n e g a t e ( ) −> C l e a r I n t e g e r <K>;
C l e a r I n t e g e r <K> : : add ( C l e a r I n t e g e r <K>) −> C l e a r I n t e g e r <K>;
C l e a r I n t e g e r <K> : : sub ( C l e a r I n t e g e r <K>) −> C l e a r I n t e g e r <K>;
C l e a r I n t e g e r <K> : : mul ( C l e a r I n t e g e r <K>) −> C l e a r I n t e g e r <K>;
C l e a r I n t e g e r <K> : : a d d s e c r e t ( S e c r e t I n t e g e r <K>) −> S e c r e t I n t e g e r <K>;
C l e a r I n t e g e r <K> : : s u b s e c r e t ( S e c r e t C l e a r I n t e g e r <K>) −> S e c r e t I n t e g e r <K>;
C l e a r I n t e g e r <K> : : m u l s e c r e t ( S e c r e t I n t e g e r <K>) −> S e c r e t I n t e g e r <K>;
S e c r e t I n t e g e r <K> : : n e g a t e ( ) −> S e c r e t I n t e g e r <K>;
S e c r e t I n t e g e r <K> : : add ( S e c r e t I n t e g e r <K>) −> S e c r e t I n t e g e r <K>;
S e c r e t I n t e g e r <K> : : sub ( S e c r e t I n t e g e r <K>) −> S e c r e t I n t e g e r <K>;
S e c r e t I n t e g e r <K> : : mul ( S e c r e t I n t e g e r <K>) −> S e c r e t I n t e g e r <K>;
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S e c r e t I n t e g e r <K> : : a d d c l e a r ( C l e a r I n t e g e r <K>) −> S e c r e t I n t e g e r <K>;
S e c r e t I n t e g e r <K> : : s u b c l e a r ( C l e a r I n t e g e r <K>) −> S e c r e t I n t e g e r <K>;
S e c r e t I n t e g e r <K> : : m u l c l e a r ( C l e a r I n t e g e r <K>) −> S e c r e t I n t e g e r <K>;

8.13 ClearFixed
A clear fixed point number is represented as a ClearInteger<K> value x and a constant F , with the fixed point
number so represented being x/2F . This representation, and the associated functions, should be avoided if at all
possible. The ClearIEEE is much faster, providing near native speed operations. The ClearFixed type is really
for interacting with the SecretFixed type. We provide a full math library for this type, but this again is mainly for
interaction/testing purposes.

use s c a l e s t d : : f i x e d p o i n t : : ∗ ;
#[ i n l i n e ( a lways ) ]
#[ s c a l e : : main (KAPPA = 40) ]
fn main ( ) {

l e t c : C l e a r F i x e d <40,20>= C l e a r F i x e d : : from ( 3 . 1 4 1 5 9 2 ) ;
p r i n t ! ( c , ”\n ” ) ;

}

ClearFixed::from(x)

You can convert an f64 constant, an i64, a ClearModp, a ClearIEEE or a ClearInteger<K> to a ClearFixed<K,F>
as follows:

l e t two = ClearModp : : from ( 2 ) ;
l e t t w o a s c f i x : C l e a r F i x e d <40,20>= C l e a r F i x e d : : from ( c ) ;

a.recast()

A value of one size can be recast to another using the recast member function. It is assumed the user knows what
they are doing here and that such recasting will necessarily result in a valid representation being created.

l e t c = ClearModp : : from ( 2 ) ;
l e t c i : C l e a r F i x e d <40,20>= C l e a r F i x e d : : from ( c ) ;
l e t c i 1 : C l e a r F i x e d <50,30>= unsafe { a . r e c a s t ( ) } ;

a.rep()

Returns the internal representation as a ClearInteger<K> value, this is basically the fixed point value multiplied
by 2F .

a.rep_integer()

This returns the ClearModp value which is the integer part of the fixed point number. Basically it executes x >> F
if x is positive and −((−x) >> F ) if x is negative.

a.set(v)

Sets the internal representation to be the ClearInteger<K> value v.

a.set_modp(v)

Sets the internal representation to be the ClearInteger<K> value obtianed by calling set for the type ClearInteger<K>
on the ClearModp value v.
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ClearFixed::randomize()

Produces a random value in the range [0, . . . , 1), it assumes that K > F . This random number is the ‘same’ for all
players.

l e t a : C l e a r F i x e d <20,10> = C l e a r F i x e d : : r andomize ( ) ;

8.13.1 Comparisons

The following ‘operators’ can be applied between two ClearFixed<K,F> values,the output being a ClearModp
value. As the result of the operator cannot be used in a conditional branch, we use the member function notation
for such ‘operators’, as opposed to the operator notation. Thus syntactically the programmer is less likely to make a
mistake.

a.gt(x), a.ge(x), a.lt(x), a.le(x), a.gt(x), a.eq(x), a.ne(x)

The following give variants which compare just to zero.

a.gtz(), a.gez(), a.ltz(), a.lez(), a.gtz(), a.eqz(), a.nez(x)

8.14 SecretFixed
A secret fixed point number is represented as a SecretInteger<K> value x and a constant F , with the fixed point
number so represented being x/2F . Many operations on SecretFixed values make use of the statistical security
gap KAPPA defined in the pre-amble.

use s c a l e s t d : : f i x e d p o i n t : : ∗ ;
#[ i n l i n e ( a lways ) ]
#[ s c a l e : : main (KAPPA = 40) ]
fn main ( ) {

l e t c : S e c r e t F i x e d <40,20>= S e c r e t F i x e d : : from ( 3 . 1 4 1 5 9 2 ) ;
p r i n t ! ( c , ”\n ” ) ;

}

SecretFixed::from(x)

You can convert an f64 constant, an i64, ClearModp, ClearInteger<K> or a ClearFixed<K,F> to a
SecretFixed<K,F> as follows:

l e t two = ClearModp : : from ( 2 ) ;
l e t t w o a s c f i x : C l e a r F i x e d <40,20>= C l e a r F i x e d : : from ( c ) ;
l e t t w o a s s f i x : S e c r e t F i x e d <40,20>= S e c r e t F i x e d : : from ( c ) ;

a.recast()

A value of one size can be recast to another using the recast member function. It is assumed the user knows what
they are doing here and that such recasting will necessarily result in a valid representation being created.

l e t c1 : S e c r e t F i x e d <40,20>= C l e a r F i x e d : : from ( c ) ;
l e t c2 : S e c r e t F i x e d <50,30>= unsafe { a . r e c a s t ( ) } ;
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a.rep()

Returns the internal representation as a SecretInteger<K> value, this is basically the fixed point value multiplied
by 2F .

a.set(v)

Sets the internal representation to be the SecretInteger<K> value v.

a.set_modp(v)

Sets the internal representation to be the SecretInteger<K> value obtianed by calling set for the type SecretInteger<K>
on the SecretModp value v.

SecretFixed::randomize()

Produces a (secret) random value in the range [0, . . . , 1), it assumes that K > F . This random number is the ‘same’
for all players.

l e t a : S e c r e t F i x e d <20,10> = S e c r e t F i x e d : : r andomize ( ) ;

8.14.1 Comparisons

The following ‘operators’ can be applied between two SecretFixed<K,F> values,the output being a SecretModp
value. As the result of the operator cannot be used in a conditional branch, we use the member function notation for
such ‘operators’, as opposed to the operator notation. Thus syntactically the programmer is less likely to make a
mistake.

a.gt(x), a.ge(x), a.lt(x), a.le(x), a.gt(x), a.eq(x), a.ne(x)

The following give variants which compare just to zero.

a.gtz(), a.gez(), a.ltz(), a.lez(), a.gtz(), a.eqz(), a.nez(x)

8.15 Arithmetic of ClearFixed and SecretFixed
Standard arithmetic operations +,−,×, / can be applied to types ClearFixed<K,F> and SecretFixed<K,F>.
To ensure efficiency no check is performed for overflow. Thus if the number exceed 2K−F−1 in absolute value then
undefined behvaiour is likely to result. Clear and secret values can be combined to result in a secret value.

8.16 ClearFloat
A clear floating point number is represented by a an Array of five ClearModp-elements: (v, p, z, s, err). They
represent the value

u = (1− 2 · s) · (1− z) · v · 2p,
with the convention that if z = 1 then s = 0. Note, that as Arrays do not implement Copy neither does ClearFloat,
it does however implement Clone. The ClearFloat type is meant for interacting with the SecretFloat type.
It is very slow in comparison to the ClearIEEE and ClearFixed types.

The type comes with two parameters V and P , which describe the bitsize of the mantissa and the exponent re-
spectively. An optional parameter is DETECT_OVERFLOW (default value: true), that indicates whether mathematical
operators should check if their output exceeds the bounds of V and P . To set the DETECT_OVERFLOW value to false
you should specify this in the macro before the main call, as in....
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use s c a l e s t d : : f l o a t i n g p o i n t : : ∗ ;
#[ i n l i n e ( a lways ) ]
#[ s c a l e : : main (KAPPA = 40 , DETECT OVERFLOW = f a l s e ) ]
fn main ( ) {

l e t c : C l e a r F l o a t <40,10>= C l e a r F l o a t : : from ( 3 . 1 4 1 5 9 2 ) ;
p r i n t ! ( c , ”\n ” ) ;

}

If the value is not defined in the initial macro then the default value of true is taken:

use s c a l e s t d : : f l o a t i n g p o i n t : : ∗ ;
#[ i n l i n e ( a lways ) ]
#[ s c a l e : : main (KAPPA = 40) ]
fn main ( ) {

l e t c : C l e a r F l o a t <40,10>= C l e a r F l o a t : : from ( 3 . 1 4 1 5 9 2 ) ;
p r i n t ! ( c , ”\n ” ) ;

}

To avoid unnecessary cloning, the Print trait also allows references to a ClearFloat to be passed to it:

use s c a l e s t d : : f l o a t i n g p o i n t : : ∗ ;
#[ i n l i n e ( a lways ) ]
#[ s c a l e : : main (KAPPA = 40) ]
fn main ( ) {

l e t c : C l e a r F l o a t <40,10>= C l e a r F l o a t : : from ( 3 . 1 4 1 5 9 2 ) ;
p r i n t ! (&c , ”\n ” ) ;

}

ClearFloat::from(x)

You can convert a value of type f64, i64, ClearFixed<K,F>, ClearInteger<K>2 or ClearIEEE to ClearFloat.

l e t t w o a s c f l o a t : C l e a r F i x e d <40,10>= C l e a r F l o a t : : from (2 f 6 4 ) ;

Note that the K for ClearInteger<K> and the K for ClearFixed<K,F>must be larger than the V of ClearFloat<V,P>.

ClearFloat::set(x)

Given an Array of five ClearModp values this sets them to be the representation of a ClearFloat value.

a.v(), a.p(), a.z(), a.s(), a.err()

Gets the associated representation value as a ClearModp.

8.16.1 Comparisons

The following ‘operators’ can be applied between two ClearFloat<V,P> values,the output being a ClearModp
value. As the result of the operator cannot be used in a conditional branch, we use the member function notation
for such ‘operators’, as opposed to the operator notation. Thus syntactically the programmer is less likely to make a
mistake.

a.gt(x), a.ge(x), a.lt(x), a.le(x), a.gt(x), a.eq(x), a.ne(x)

The following give variants which compare just to zero.
2Note here K does not necessarily have to equal V .
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a.gtz(), a.gez(), a.ltz(), a.lez(), a.gtz(), a.eqz(), a.nez(x)

To be able to avoid costly cloning, the comparisons can be used on both references and clones. All options for
gt() and gtz() for ClearModp are presented in following example:

l e t ca : C l e a r F l o a t <40,20> = C l e a r F l o a t : : from ( 1 2 3 5 4 6 ) ;
l e t cb : C l e a r F l o a t <40,20> = C l e a r F l o a t : : from ( 7 8 9 ) ;

l e t g t c c = ca . c l o n e ( ) . g t ( cb . c l o n e ( ) ) ;
l e t g t r c = (& ca ) . g t ( cb . c l o n e ( ) ) ;
l e t g t c r = ca . c l o n e ( ) . g t (&cb ) ;
l e t g t r r = (& ca ) . g t (&cb ) ;

l e t g t z c = ca . c l o n e ( ) . g t z ( ) ;
l e t g t z r = (& ca ) . g t z ( ) ;

8.17 SecretFloat
A secret floating point number is represented by an Array of five SecretModp-values. Together they represent the
value as follows:

u = (1− 2 · s) · (1− z) · v · 2p,

again with the convention that if z = 1 then s = 0. In this array, the mantissa v has a bitsize V and the exponent p is of
size P. Many operations on SecretFloat values make use of the statistical security gap KAPPA defined in the pre-
amble. As for the ClearFloat type, there is also a parameter DETECT_OVERFLOW defined in the same manner.
Note, that as Arrays do not implement Copy neither does SecretFloat, it does however implement Clone.

use s c a l e s t d : : f l o a t i n g p o i n t : : ∗ ;
#[ i n l i n e ( a lways ) ]
#[ s c a l e : : main (KAPPA = 40) ]
fn main ( ) {

l e t c : S e c r e t F l o a t <40,20>= S e c r e t F l o a t : : from ( 3 . 1 4 1 5 9 2 ) ;
p r i n t ! ( c . r e v e a l ( ) , ”\n ” ) ;

}

SecretFloat::from(x)

You can convert a value of type f64, i64, SecretInteger<K> or SecretFixed<K,F> to SecretFloat as
follows:

l e t t w o a s s f l o a t : S e c r e t F l o a t <40,10> = S e c r e t F l o a t : : from (2 f 6 4 ) ;

Note that the K for SecretInteger<K> and the K for SecretFixed<K,F> must be larger than the V of
SecretFloat<V,P>.

SecretFloat::set(x)

Given an Array of five SecretModp values this sets them to be the representation of a SecretFloat value.

a.v(), a.p(), a.z(), a.s(), a.err()

Gets the associated representation value as a SecretModp.
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a.reveal()

You can reveal a value of type SecretFloat to a ClearFloat-type value as follows:

l e t c f a : C l e a r F l o a t <40,10> = s f a . r e v e a l ( ) ;

If the entered value is invalid (err == 0), reveal() returns a ClearFloat with all parameter values set to zero.
This to avoid information leakage.

8.17.1 Comparisons

The following ‘operators’ can be applied between two SecretFloat<V,P> values,the output being a SecretModp
value. As the result of the operator cannot be used in a conditional branch, we use the member function notation for
such ‘operators’, as opposed to the operator notation. Thus syntactically the programmer is less likely to make a
mistake.

a.gt(x), a.ge(x), a.lt(x), a.le(x), a.gt(x), a.eq(x), a.ne(x)

The following give variants which compare just to zero.

a.gtz(), a.gez(), a.ltz(), a.lez(), a.gtz(), a.eqz(), a.nez(x)

To be able to avoid costly cloning, the comparisons can be used on both references and clones. All options for
gt() and gtz() for SecretModp are presented in following example:

l e t sa : S e c r e t F l o a t <40,20> = S e c r e t F l o a t : : from ( 1 2 3 5 4 6 ) ;
l e t sb : S e c r e t F l o a t <40,20> = S e c r e t F l o a t : : from ( 7 8 9 ) ;

l e t g t c c = sa . c l o n e ( ) . g t ( sb . c l o n e ( ) ) ;
l e t g t r c = (& sa ) . g t ( sb . c l o n e ( ) ) ;
l e t g t c r = sa . c l o n e ( ) . g t (& sb ) ;
l e t g t r r = (& sa ) . g t (& sb ) ;

l e t g t z c = sa . c l o n e ( ) . g t z ( ) ;
l e t g t z r = (& sa ) . g t z ( ) ;

8.18 Arithmetic of ClearFixed and SecretFixed
Standard arithmetic operations +,−,×, / can be applied to types ClearFloat<V,P> and SecretFloat<V,P>.
Depending on the flag parameter DETECT_OVERFLOW, the results of these operations is checked for overflow/under-
flow. Clear and secret values can be combined to result in a secret value.

To avoid the costly .clone() operation on every input to arithmetic operations (and comparisons), the operators
also accept references. This allows the variable to be used in arithmetic without ending its lifetime. These are accessed
as in the following example for addition.

l e t ca : C l e a r F l o a t <40,20> = C l e a r F l o a t : : from ( 1 2 3 4 5 6 ) ;
l e t sa : S e c r e t F l o a t <40,20> = S e c r e t F l o a t : : from ( ca . c l o n e ( ) ) ;
l e t cb : C l e a r F l o a t <40,20> = C l e a r F l o a t : : from ( 7 8 9 ) ;
l e t sb : S e c r e t F l o a t <40,20> = S e c r e t F l o a t : : from ( cb . c l o n e ( ) ) ;

l e t s s c r = sa . c l o n e ( ) + &sb ;
l e t s s r r = &sa + &sb ;
l e t s s r c = &sa + sb . c l o n e ( ) ;
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l e t s s c c = sa . c l o n e ( ) + sb . c l o n e ( ) ;

l e t s c c r = sa . c l o n e ( ) + &cb ;
l e t s c r r = &sa + &cb ;
l e t s c r c = &sa + cb . c l o n e ( ) ;
l e t s c c c = sa . c l o n e ( ) + cb . c l o n e ( ) ;

l e t c s c r = ca . c l o n e ( ) + &sb ;
l e t c s r r = &ca + &sb ;
l e t c s r c = &ca + sb . c l o n e ( ) ;
l e t c s c c = ca . c l o n e ( ) + sb . c l o n e ( ) ;

l e t c c c r = ca . c l o n e ( ) + &cb ;
l e t c c r r = &ca + &cb ;
l e t c c r c = &ca + cb . c l o n e ( ) ;
l e t cccc = ca . c l o n e ( ) + cb . c l o n e ( ) ;

8.19 ORAM Operations
Given a SecretModp index value i and an Array or Slice A one wants to either read the value A[i], or one wants
to update A[i] with a new value v. One would want to do this without revealing the value i, or even any access pattern.
This is enabled via a Demux data structure which provided a linear time read and write access to the data structure
in an oblivious way. The key thing needed is an upper bound on the bit length of the index value i, which is kind of
known in any case, as i must be less than the length of the Array or Slice.

Note these operations require a bit length of the base prime of larger than 100.

a.read_oram::<K,KAPPA>(i)

This takes a secret index of bit length less than K are does a read into the array a at position i. The value K must
be such that 2K is greater than or equal to the length of a. As an example, we present an example for Arrays, an
identical syntax works for Slices,

l e t mut a r r : Array<SecretModp , 20> = Array : : u n i n i t i a l i z e d ( ) ;
f o r i in 0 . . 2 0 {

a r r . s e t ( i , &SecretModp : : from ( i as i 6 4 ) ) ;
}

l e t i = SecretModp : : from ( 7 ) ;
l e t v = a r r . r e a d o r a m ::<5 ,40>( i ) ;

a.write_oram::<K,KAPPA>(i, v)

This takes a secret index of bit length less than K are does a write into the array a of the value v at position i. The
value K must be such that 2K is greater than or equal to the length of a. As an example, we present an example for
Slices, an identical syntax works for Arrays,

l e t mut s l i : S l i c e <SecretModp> = S l i c e : : u n i n i t i a l i z e d ( 2 0 ) ;
f o r i in 0 . . 2 0 {

s l i . s e t ( i , &SecretModp : : from ( i as i 6 4 ) ) ;
}

l e t i = SecretModp : : from ( 1 3 ) ;
l e t v = SecretModp : : from ( 6 6 6 ) ;
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s l i . w r i t e o r a m ::<5 ,40>( i , v ) ;

Demux::<K,KAPPA>(i)

In order to allow efficient indexing at the same index, we also allow the creation of the demux data externally. This
function produces a Slice of SecretModp values of length at least 2K , which corresponds to the demux array
of the index i. Note, the function outputs an Slice which is bigger than needed. This is done in order to enable a
memory efficient algorithm.

demux::<KAPPA>(i, k)

Same, but now k is a runtime variable and not a compile time constant.

a.read_with_demux(&demux)

This is the same as the read_oram operation, but uses the demux output. Thus we can execute

l e t i = SecretModp : : from ( 1 9 ) ;
l e t demx = Demux::<5 ,40>( i ) ;
l e t va = a r r . r e a d w i t h d e m u x (&demx ) ;
l e t vs = s l i . r e a d w i t h d e m u x (&demx ) ;

a.write_with_demux(&demux, v)

This is the same as the write_oram operation, but uses the demux output. Thus we can execute

l e t i = SecretModp : : from ( 1 9 ) ;
l e t demx = Demux::<5 ,40>( i ) ;
l e t v = SecretModp : : from ( 6 6 6 ) ;
l e t va = a r r . w r i t e w i t h d e m u x (&demx , v ) ;
l e t vs = s l i . w r i t e w i t h d e m u x (&demx , v ) ;

a.read_with_demux_and_offset(offset, &demux)

This is the same as the read_oram_with_demux operation, but offsets the demux operation to start at position
offset. No checking is performed as to whether this gives array out of bounds errors.

l e t i = SecretModp : : from ( 5 ) ;
l e t demx = demux ::<40>( i , 3 ) ;
l e t va = a r r . r e a d w i t h d e m u x a n d o f f s e t ( 1 3 , &demx ) ;
l e t vs = s l i . r e a d w i t h d e m u x a n d o f f s e t ( 1 3 , &demx ) ;

a.write_with_demux_and_offset(offset, &demux, v)

This is the same as the write_oram_with_demux operation, but offsets the demux operation to start at position
offset. No checking is performed as to whether this gives array out of bounds errors.

l e t i = SecretModp : : from ( 5 ) ;
l e t demx = demux : : ( i , 3 ) ;
l e t v = SecretModp : : from ( 6 6 6 ) ;
l e t va = a r r . w r i t e w i t h d e m u x ( 1 3 , &demx , v ) ;
l e t vs = s l i . w r i t e w i t h d e m u x ( 1 3 , &demx , v ) ;
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9 Math Library
Eventually we expect every floating point type to have a full set of math functions. Remember the ClearIEEE type
is must faster than the ClearFixed<K,F> type, but the SecretFixed<K,F> is generally much faster than the
SecretIEEE type. To include the functions in the math library use

use s c a l e s t d : : math : : ∗ ;

This captures traits Floor, FAbs and Sqrt (implementing member functions floor(), fabs() and sqrt()
respectively), plus also a supertrait called Float which captures much of the properties common to all floating point
types.

Currently the following are available (we comment the function out if it is not yet fully tested/implemented):

9.1 Generic Routines
poly_eval(poly, x)

This generic function with signature

pub fn p o l y e v a l <S , C , c o n s t N: u64>( po ly : Array<C , N> , x : S ) −> S
where

S : Float ,
S : Add<C , Output = S> ,
S : Mul<S , Output = S> ,
C : Float ,

allows one to evaluate a polynomial in type C (a clear floating point type) at a value of type S (which is either the same
clear floating point type, or its associated secret variant).

Pade(P, Q, x)

This generic function with signature

pub fn Pade<S , C , c o n s t N: u64>
( p o l y p : Array<C , N> , p o l y q : Array<C , N> , x : S ) −> S

where
S : Float ,
S : Add<S , Output = S> ,
S : Mul<S , Output = S> ,
S : Div<S , Output = S> ,
S : Mul<C , Output = S> ,
S : From<C> ,
C : Float ,

allows one to evaluate the Pade approximation given by polynomials P and Q in type C (a clear floating point type) at
a value of type S (which is either the same clear floating point type, or its associated secret variant). The polynomials
P and Q must have the same degree.

All floating point types T have predefined constants

T : : t w o p i ( ) ;
T : : p i ( ) ;
T : : h a l f p i ( ) ;
T : : l n 2 ( ) ;
T : : e ( ) ;
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9.2 ClearIEEE
The following are all implemented via a local function call to the SCALE C++ runtime; thus are relatively fast.

l e t c = ClearIEEE : : from ( 0 . 5 4 3 1 ) ;
l e t t = c . acos ( ) ;
l e t t = c . a s i n ( ) ;
l e t t = c . a t a n ( ) ;
l e t t = c . cos ( ) ;
l e t t = c . cosh ( ) ;
l e t t = c . s i n ( ) ;
l e t t = c . s i n h ( ) ;
l e t t = c . t a n ( ) ;
l e t t = c . t a n h ( ) ;
l e t t = c . exp ( ) ;
l e t t = c . exp2 ( )
l e t t = c . l o g ( ) ;
l e t t = c . l og2 ( ) ;
l e t t = c . log10 ( ) ;
l e t t = c . c e i l ( ) ;
l e t t = c . f a b s ( ) ;
l e t t = c . f l o o r ( ) ;
l e t t = c . s q r t ( ) ;

Note, exp2() computes the function 2x.

9.3 SecretIEEE
The following functions are implemented

l e t s = Sec re t IEEE : : from ( 0 . 5 4 3 1 ) ;
l e t t = s . acos ( ) ;
l e t t = s . a s i n ( ) ;
l e t t = s . a t a n ( ) ;
l e t t = s . cos ( ) ;
l e t t = s . cosh ( ) ;
l e t t = s . s i n ( ) ;
l e t t = s . s i n h ( ) ;
l e t t = s . t a n ( ) ;
l e t t = s . t a n h ( ) ;
l e t t = s . exp ( ) ;
l e t t = s . exp2 ( )
l e t t = s . l o g ( ) ;
l e t t = s . l og2 ( ) ;
l e t t = s . l og10 ( ) ;
l e t t = s . c e i l ( ) ;
l e t t = s . f a b s ( ) ;
l e t t = s . f l o o r ( ) ;
l e t t = s . s q r t ( ) ;

Note logarithms of negative values result in undefined behaviour.

9.4 ClearFixed
The following functions are implemented
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l e t c : C l e a r F i x e d <40,20>= C l e a r F i x e d : : from ( 0 . 5 4 3 1 ) ;
l e t t = c . acos ( ) ;
l e t t = c . a s i n ( ) ;
l e t t = c . a t a n ( ) ;
l e t t = c . cos ( ) ;
l e t t = c . cosh ( ) ;
l e t t = c . s i n ( ) ;
l e t t = c . s i n h ( ) ;
l e t t = c . t a n ( ) ;
l e t t = c . t a n h ( ) ;
l e t t = c . exp ( ) ;
l e t t = c . exp2 ( )
l e t t = c . l o g ( ) ;
l e t t = c . l og2 ( ) ;
l e t t = c . log10 ( ) ;
l e t t = c . c e i l ( ) ;
l e t t = c . f a b s ( ) ;
l e t t = c . f l o o r ( ) ;
l e t t = c . s q r t ( ) ;

9.5 SecretFixed
The following functions are implemented

l e t s : S e c r e t F i x e d <40,20>= S e c r e t F i x e d : : from ( 0 . 5 4 3 1 ) ;
l e t s = c . acos ( ) ;
l e t s = c . a s i n ( ) ;
l e t s = c . a t a n ( ) ;
l e t s = c . cos ( ) ;
l e t s = c . cosh ( ) ;
l e t s = c . s i n ( ) ;
l e t s = c . s i n h ( ) ;
l e t s = c . t a n ( ) ;
l e t s = c . t a n h ( ) ;
l e t s = c . exp ( ) ;
l e t s = c . exp2 ( )
l e t s = c . l o g ( ) ;
l e t s = c . l og2 ( ) ;
l e t s = c . log10 ( ) ;
l e t s = c . c e i l ( ) ;
l e t s = c . f a b s ( ) ;
l e t s = c . f l o o r ( ) ;
l e t s = c . s q r t ( ) ;

9.6 ClearFloat
The following functions are implemented. For the exponential and (hence) the hyperbolic functions we assume that
V < 2P−1, which it will be in almost all instances; unless P is very small.

l e t c : C l e a r F l o a t <40,20>= C l e a r F l o a t : : from ( 0 . 5 4 3 1 ) ;
/ / l e t t = c . c l o n e ( ) . acos ( ) ;
/ / l e t t = c . c l o n e ( ) . a s i n ( ) ;
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/ / l e t t = c . c l o n e ( ) . a tan ( ) ;
/ / l e t t = c . c l o n e ( ) . cos ( ) ;
l e t t = c . c l o n e ( ) . cosh ( ) ;
/ / l e t t = c . c l o n e ( ) . s i n ( ) ;
l e t t = c . c l o n e ( ) . s i n h ( ) ;
/ / l e t t = c . c l o n e ( ) . t a n ( ) ;
l e t t = c . c l o n e ( ) . t a n h ( ) ;
l e t t = c . c l o n e ( ) . exp ( ) ;
l e t t = c . c l o n e ( ) . exp2 ( )
l e t t = c . c l o n e ( ) . l o g ( ) ;
l e t t = c . c l o n e ( ) . l og2 ( ) ;
l e t t = c . c l o n e ( ) . l og10 ( ) ;
l e t t = c . c l o n e ( ) . c e i l ( ) ;
l e t t = c . c l o n e ( ) . f a b s ( ) ;
l e t t = c . c l o n e ( ) . f l o o r ( ) ;
l e t t = c . c l o n e ( ) . s q r t ( ) ;

9.7 SecretFloat
The following functions are implemented. For the exponential and (hence) the hyperbolic functions we assume that
V < 2P−1, which it will be in almost all instances; unless P is very small.

l e t s : S e c r e t F l o a t <40,20>= S e c r e t F l o a t : : from ( 0 . 5 4 3 1 ) ;
/ / l e t t = s . c l o n e ( ) . acos ( ) ;
/ / l e t t = s . c l o n e ( ) . a s i n ( ) ;
/ / l e t t = s . c l o n e ( ) . a tan ( ) ;
/ / l e t t = s . c l o n e ( ) . cos ( ) ;
l e t t = s . c l o n e ( ) . cosh ( ) ;
/ / l e t t = s . c l o n e ( ) . s i n ( ) ;
l e t t = s . c l o n e ( ) . s i n h ( ) ;
/ / l e t t = s . c l o n e ( ) . t a n ( ) ;
l e t t = s . c l o n e ( ) . t a n h ( ) ;
l e t t = s . c l o n e ( ) . exp ( ) ;
l e t t = s . c l o n e ( ) . exp2 ( )
l e t t = s . c l o n e ( ) . l o g ( ) ;
l e t t = s . c l o n e ( ) . l og2 ( ) ;
l e t t = s . c l o n e ( ) . l og10 ( ) ;
l e t t = s . c l o n e ( ) . c e i l ( ) ;
l e t t = s . c l o n e ( ) . f a b s ( ) ;
l e t t = s . c l o n e ( ) . f l o o r ( ) ;
l e t t = s . c l o n e ( ) . s q r t ( ) ;
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